|
- *> \brief \b CDRVGT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
- * B, X, XACT, WORK, RWORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NN, NOUT, NRHS
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NVAL( * )
- * REAL RWORK( * )
- * COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
- * $ XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CDRVGT tests CGTSV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (NMAX*4)
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is COMPLEX array, dimension (NMAX*4)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (NMAX*max(3,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (NMAX+2*NRHS)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (2*NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
- $ B, X, XACT, WORK, RWORK, IWORK, NOUT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NN, NOUT, NRHS
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NVAL( * )
- REAL RWORK( * )
- COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
- $ XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 12 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 6 )
- * ..
- * .. Local Scalars ..
- LOGICAL TRFCON, ZEROT
- CHARACTER DIST, FACT, TRANS, TYPE
- CHARACTER*3 PATH
- INTEGER I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
- $ K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
- $ NFAIL, NIMAT, NRUN, NT
- REAL AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
- $ RCONDC, RCONDI, RCONDO
- * ..
- * .. Local Arrays ..
- CHARACTER TRANSS( 3 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RESULT( NTESTS ), Z( 3 )
- * ..
- * .. External Functions ..
- REAL CLANGT, SCASUM, SGET06
- EXTERNAL CLANGT, SCASUM, SGET06
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, CCOPY, CERRVX, CGET04,
- $ CGTSV, CGTSVX, CGTT01, CGTT02, CGTT05, CGTTRF,
- $ CGTTRS, CLACPY, CLAGTM, CLARNV, CLASET, CLATB4,
- $ CLATMS, CSSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
- $ 'C' /
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Complex precision'
- PATH( 2: 3 ) = 'GT'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL CERRVX( PATH, NOUT )
- INFOT = 0
- *
- DO 140 IN = 1, NN
- *
- * Do for each value of N in NVAL.
- *
- N = NVAL( IN )
- M = MAX( N-1, 0 )
- LDA = MAX( 1, N )
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 130 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 130
- *
- * Set up parameters with CLATB4.
- *
- CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ COND, DIST )
- *
- ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
- IF( IMAT.LE.6 ) THEN
- *
- * Types 1-6: generate matrices of known condition number.
- *
- KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
- SRNAMT = 'CLATMS'
- CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
- $ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
- $ INFO )
- *
- * Check the error code from CLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
- $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 130
- END IF
- IZERO = 0
- *
- IF( N.GT.1 ) THEN
- CALL CCOPY( N-1, AF( 4 ), 3, A, 1 )
- CALL CCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
- END IF
- CALL CCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
- ELSE
- *
- * Types 7-12: generate tridiagonal matrices with
- * unknown condition numbers.
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
- *
- * Generate a matrix with elements from [-1,1].
- *
- CALL CLARNV( 2, ISEED, N+2*M, A )
- IF( ANORM.NE.ONE )
- $ CALL CSSCAL( N+2*M, ANORM, A, 1 )
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Reuse the last matrix by copying back the zeroed out
- * elements.
- *
- IF( IZERO.EQ.1 ) THEN
- A( N ) = Z( 2 )
- IF( N.GT.1 )
- $ A( 1 ) = Z( 3 )
- ELSE IF( IZERO.EQ.N ) THEN
- A( 3*N-2 ) = Z( 1 )
- A( 2*N-1 ) = Z( 2 )
- ELSE
- A( 2*N-2+IZERO ) = Z( 1 )
- A( N-1+IZERO ) = Z( 2 )
- A( IZERO ) = Z( 3 )
- END IF
- END IF
- *
- * If IMAT > 7, set one column of the matrix to 0.
- *
- IF( .NOT.ZEROT ) THEN
- IZERO = 0
- ELSE IF( IMAT.EQ.8 ) THEN
- IZERO = 1
- Z( 2 ) = REAL( A( N ) )
- A( N ) = ZERO
- IF( N.GT.1 ) THEN
- Z( 3 ) = REAL( A( 1 ) )
- A( 1 ) = ZERO
- END IF
- ELSE IF( IMAT.EQ.9 ) THEN
- IZERO = N
- Z( 1 ) = REAL( A( 3*N-2 ) )
- Z( 2 ) = REAL( A( 2*N-1 ) )
- A( 3*N-2 ) = ZERO
- A( 2*N-1 ) = ZERO
- ELSE
- IZERO = ( N+1 ) / 2
- DO 20 I = IZERO, N - 1
- A( 2*N-2+I ) = ZERO
- A( N-1+I ) = ZERO
- A( I ) = ZERO
- 20 CONTINUE
- A( 3*N-2 ) = ZERO
- A( 2*N-1 ) = ZERO
- END IF
- END IF
- *
- DO 120 IFACT = 1, 2
- IF( IFACT.EQ.1 ) THEN
- FACT = 'F'
- ELSE
- FACT = 'N'
- END IF
- *
- * Compute the condition number for comparison with
- * the value returned by CGTSVX.
- *
- IF( ZEROT ) THEN
- IF( IFACT.EQ.1 )
- $ GO TO 120
- RCONDO = ZERO
- RCONDI = ZERO
- *
- ELSE IF( IFACT.EQ.1 ) THEN
- CALL CCOPY( N+2*M, A, 1, AF, 1 )
- *
- * Compute the 1-norm and infinity-norm of A.
- *
- ANORMO = CLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
- ANORMI = CLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
- *
- * Factor the matrix A.
- *
- CALL CGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
- $ AF( N+2*M+1 ), IWORK, INFO )
- *
- * Use CGTTRS to solve for one column at a time of
- * inv(A), computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 40 I = 1, N
- DO 30 J = 1, N
- X( J ) = ZERO
- 30 CONTINUE
- X( I ) = ONE
- CALL CGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
- $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
- $ LDA, INFO )
- AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
- 40 CONTINUE
- *
- * Compute the 1-norm condition number of A.
- *
- IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDO = ONE
- ELSE
- RCONDO = ( ONE / ANORMO ) / AINVNM
- END IF
- *
- * Use CGTTRS to solve for one column at a time of
- * inv(A'), computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 60 I = 1, N
- DO 50 J = 1, N
- X( J ) = ZERO
- 50 CONTINUE
- X( I ) = ONE
- CALL CGTTRS( 'Conjugate transpose', N, 1, AF,
- $ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
- $ IWORK, X, LDA, INFO )
- AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
- 60 CONTINUE
- *
- * Compute the infinity-norm condition number of A.
- *
- IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDI = ONE
- ELSE
- RCONDI = ( ONE / ANORMI ) / AINVNM
- END IF
- END IF
- *
- DO 110 ITRAN = 1, 3
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- RCONDC = RCONDO
- ELSE
- RCONDC = RCONDI
- END IF
- *
- * Generate NRHS random solution vectors.
- *
- IX = 1
- DO 70 J = 1, NRHS
- CALL CLARNV( 2, ISEED, N, XACT( IX ) )
- IX = IX + LDA
- 70 CONTINUE
- *
- * Set the right hand side.
- *
- CALL CLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
- $ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
- *
- IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
- *
- * --- Test CGTSV ---
- *
- * Solve the system using Gaussian elimination with
- * partial pivoting.
- *
- CALL CCOPY( N+2*M, A, 1, AF, 1 )
- CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- SRNAMT = 'CGTSV '
- CALL CGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
- $ LDA, INFO )
- *
- * Check error code from CGTSV .
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'CGTSV ', INFO, IZERO, ' ',
- $ N, N, 1, 1, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- NT = 1
- IF( IZERO.EQ.0 ) THEN
- *
- * Check residual of computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK,
- $ LDA )
- CALL CGTT02( TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- NT = 3
- END IF
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 80 K = 2, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'CGTSV ', N, IMAT,
- $ K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 80 CONTINUE
- NRUN = NRUN + NT - 1
- END IF
- *
- * --- Test CGTSVX ---
- *
- IF( IFACT.GT.1 ) THEN
- *
- * Initialize AF to zero.
- *
- DO 90 I = 1, 3*N - 2
- AF( I ) = ZERO
- 90 CONTINUE
- END IF
- CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
- $ CMPLX( ZERO ), X, LDA )
- *
- * Solve the system and compute the condition number and
- * error bounds using CGTSVX.
- *
- SRNAMT = 'CGTSVX'
- CALL CGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
- $ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
- $ RCOND, RWORK, RWORK( NRHS+1 ), WORK,
- $ RWORK( 2*NRHS+1 ), INFO )
- *
- * Check the error code from CGTSVX.
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'CGTSVX', INFO, IZERO,
- $ FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
- $ NFAIL, NERRS, NOUT )
- *
- IF( IFACT.GE.2 ) THEN
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
- $ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
- $ IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- TRFCON = .FALSE.
- *
- * Check residual of computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL CGTT02( TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- * Check the error bounds from iterative refinement.
- *
- CALL CGTT05( TRANS, N, NRHS, A, A( M+1 ),
- $ A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
- $ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
- NT = 5
- END IF
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 100 K = K1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'CGTSVX', FACT, TRANS,
- $ N, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 100 CONTINUE
- *
- * Check the reciprocal of the condition number.
- *
- RESULT( 6 ) = SGET06( RCOND, RCONDC )
- IF( RESULT( 6 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'CGTSVX', FACT, TRANS, N,
- $ IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + NT - K1 + 2
- *
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
- $ ', ratio = ', G12.5 )
- 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
- $ I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
- RETURN
- *
- * End of CDRVGT
- *
- END
|