|
- *> \brief \b CCHKPT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
- * A, D, E, B, X, XACT, WORK, RWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NN, NNS, NOUT
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER NSVAL( * ), NVAL( * )
- * REAL D( * ), RWORK( * )
- * COMPLEX A( * ), B( * ), E( * ), WORK( * ), X( * ),
- * $ XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CCHKPT tests CPTTRF, -TRS, -RFS, and -CON
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (NMAX*2)
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is REAL array, dimension (NMAX*2)
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is COMPLEX array, dimension (NMAX*2)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (NMAX*NSMAX)
- *> where NSMAX is the largest entry in NSVAL.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (NMAX*max(3,NSMAX))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension
- *> (max(NMAX,2*NSMAX))
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
- $ A, D, E, B, X, XACT, WORK, RWORK, NOUT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NN, NNS, NOUT
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER NSVAL( * ), NVAL( * )
- REAL D( * ), RWORK( * )
- COMPLEX A( * ), B( * ), E( * ), WORK( * ), X( * ),
- $ XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 12 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 7 )
- * ..
- * .. Local Scalars ..
- LOGICAL ZEROT
- CHARACTER DIST, TYPE, UPLO
- CHARACTER*3 PATH
- INTEGER I, IA, IMAT, IN, INFO, IRHS, IUPLO, IX, IZERO,
- $ J, K, KL, KU, LDA, MODE, N, NERRS, NFAIL,
- $ NIMAT, NRHS, NRUN
- REAL AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
- * ..
- * .. Local Arrays ..
- CHARACTER UPLOS( 2 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RESULT( NTESTS )
- COMPLEX Z( 3 )
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL CLANHT, SCASUM, SGET06
- EXTERNAL ISAMAX, CLANHT, SCASUM, SGET06
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAERH, ALAHD, ALASUM, CCOPY, CERRGT, CGET04,
- $ CLACPY, CLAPTM, CLARNV, CLATB4, CLATMS, CPTCON,
- $ CPTRFS, CPTT01, CPTT02, CPTT05, CPTTRF, CPTTRS,
- $ CSSCAL, SCOPY, SLARNV, SSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, REAL
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 0, 0, 0, 1 / , UPLOS / 'U', 'L' /
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Complex precision'
- PATH( 2: 3 ) = 'PT'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL CERRGT( PATH, NOUT )
- INFOT = 0
- *
- DO 120 IN = 1, NN
- *
- * Do for each value of N in NVAL.
- *
- N = NVAL( IN )
- LDA = MAX( 1, N )
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 110 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
- $ GO TO 110
- *
- * Set up parameters with CLATB4.
- *
- CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ COND, DIST )
- *
- ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
- IF( IMAT.LE.6 ) THEN
- *
- * Type 1-6: generate a Hermitian tridiagonal matrix of
- * known condition number in lower triangular band storage.
- *
- SRNAMT = 'CLATMS'
- CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
- $ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
- *
- * Check the error code from CLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
- $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 110
- END IF
- IZERO = 0
- *
- * Copy the matrix to D and E.
- *
- IA = 1
- DO 20 I = 1, N - 1
- D( I ) = REAL( A( IA ) )
- E( I ) = A( IA+1 )
- IA = IA + 2
- 20 CONTINUE
- IF( N.GT.0 )
- $ D( N ) = REAL( A( IA ) )
- ELSE
- *
- * Type 7-12: generate a diagonally dominant matrix with
- * unknown condition number in the vectors D and E.
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
- *
- * Let E be complex, D real, with values from [-1,1].
- *
- CALL SLARNV( 2, ISEED, N, D )
- CALL CLARNV( 2, ISEED, N-1, E )
- *
- * Make the tridiagonal matrix diagonally dominant.
- *
- IF( N.EQ.1 ) THEN
- D( 1 ) = ABS( D( 1 ) )
- ELSE
- D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
- D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
- DO 30 I = 2, N - 1
- D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
- $ ABS( E( I-1 ) )
- 30 CONTINUE
- END IF
- *
- * Scale D and E so the maximum element is ANORM.
- *
- IX = ISAMAX( N, D, 1 )
- DMAX = D( IX )
- CALL SSCAL( N, ANORM / DMAX, D, 1 )
- CALL CSSCAL( N-1, ANORM / DMAX, E, 1 )
- *
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Reuse the last matrix by copying back the zeroed out
- * elements.
- *
- IF( IZERO.EQ.1 ) THEN
- D( 1 ) = REAL( Z( 2 ) )
- IF( N.GT.1 )
- $ E( 1 ) = Z( 3 )
- ELSE IF( IZERO.EQ.N ) THEN
- E( N-1 ) = Z( 1 )
- D( N ) = REAL( Z( 2 ) )
- ELSE
- E( IZERO-1 ) = Z( 1 )
- D( IZERO ) = REAL( Z( 2 ) )
- E( IZERO ) = Z( 3 )
- END IF
- END IF
- *
- * For types 8-10, set one row and column of the matrix to
- * zero.
- *
- IZERO = 0
- IF( IMAT.EQ.8 ) THEN
- IZERO = 1
- Z( 2 ) = D( 1 )
- D( 1 ) = ZERO
- IF( N.GT.1 ) THEN
- Z( 3 ) = E( 1 )
- E( 1 ) = ZERO
- END IF
- ELSE IF( IMAT.EQ.9 ) THEN
- IZERO = N
- IF( N.GT.1 ) THEN
- Z( 1 ) = E( N-1 )
- E( N-1 ) = ZERO
- END IF
- Z( 2 ) = D( N )
- D( N ) = ZERO
- ELSE IF( IMAT.EQ.10 ) THEN
- IZERO = ( N+1 ) / 2
- IF( IZERO.GT.1 ) THEN
- Z( 1 ) = E( IZERO-1 )
- Z( 3 ) = E( IZERO )
- E( IZERO-1 ) = ZERO
- E( IZERO ) = ZERO
- END IF
- Z( 2 ) = D( IZERO )
- D( IZERO ) = ZERO
- END IF
- END IF
- *
- CALL SCOPY( N, D, 1, D( N+1 ), 1 )
- IF( N.GT.1 )
- $ CALL CCOPY( N-1, E, 1, E( N+1 ), 1 )
- *
- *+ TEST 1
- * Factor A as L*D*L' and compute the ratio
- * norm(L*D*L' - A) / (n * norm(A) * EPS )
- *
- CALL CPTTRF( N, D( N+1 ), E( N+1 ), INFO )
- *
- * Check error code from CPTTRF.
- *
- IF( INFO.NE.IZERO ) THEN
- CALL ALAERH( PATH, 'CPTTRF', INFO, IZERO, ' ', N, N, -1,
- $ -1, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 110
- END IF
- *
- IF( INFO.GT.0 ) THEN
- RCONDC = ZERO
- GO TO 100
- END IF
- *
- CALL CPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
- $ RESULT( 1 ) )
- *
- * Print the test ratio if greater than or equal to THRESH.
- *
- IF( RESULT( 1 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- *
- * Compute RCONDC = 1 / (norm(A) * norm(inv(A))
- *
- * Compute norm(A).
- *
- ANORM = CLANHT( '1', N, D, E )
- *
- * Use CPTTRS to solve for one column at a time of inv(A),
- * computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 50 I = 1, N
- DO 40 J = 1, N
- X( J ) = ZERO
- 40 CONTINUE
- X( I ) = ONE
- CALL CPTTRS( 'Lower', N, 1, D( N+1 ), E( N+1 ), X, LDA,
- $ INFO )
- AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
- 50 CONTINUE
- RCONDC = ONE / MAX( ONE, ANORM*AINVNM )
- *
- DO 90 IRHS = 1, NNS
- NRHS = NSVAL( IRHS )
- *
- * Generate NRHS random solution vectors.
- *
- IX = 1
- DO 60 J = 1, NRHS
- CALL CLARNV( 2, ISEED, N, XACT( IX ) )
- IX = IX + LDA
- 60 CONTINUE
- *
- DO 80 IUPLO = 1, 2
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'.
- *
- UPLO = UPLOS( IUPLO )
- *
- * Set the right hand side.
- *
- CALL CLAPTM( UPLO, N, NRHS, ONE, D, E, XACT, LDA,
- $ ZERO, B, LDA )
- *
- *+ TEST 2
- * Solve A*x = b and compute the residual.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- CALL CPTTRS( UPLO, N, NRHS, D( N+1 ), E( N+1 ), X,
- $ LDA, INFO )
- *
- * Check error code from CPTTRS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'CPTTRS', INFO, 0, UPLO, N, N,
- $ -1, -1, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL CPTT02( UPLO, N, NRHS, D, E, X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- *+ TEST 3
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- *+ TESTS 4, 5, and 6
- * Use iterative refinement to improve the solution.
- *
- SRNAMT = 'CPTRFS'
- CALL CPTRFS( UPLO, N, NRHS, D, E, D( N+1 ), E( N+1 ),
- $ B, LDA, X, LDA, RWORK, RWORK( NRHS+1 ),
- $ WORK, RWORK( 2*NRHS+1 ), INFO )
- *
- * Check error code from CPTRFS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'CPTRFS', INFO, 0, UPLO, N, N,
- $ -1, -1, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 4 ) )
- CALL CPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
- $ RWORK, RWORK( NRHS+1 ), RESULT( 5 ) )
- *
- * Print information about the tests that did not pass the
- * threshold.
- *
- DO 70 K = 2, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, IMAT,
- $ K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 70 CONTINUE
- NRUN = NRUN + 5
- *
- 80 CONTINUE
- 90 CONTINUE
- *
- *+ TEST 7
- * Estimate the reciprocal of the condition number of the
- * matrix.
- *
- 100 CONTINUE
- SRNAMT = 'CPTCON'
- CALL CPTCON( N, D( N+1 ), E( N+1 ), ANORM, RCOND, RWORK,
- $ INFO )
- *
- * Check error code from CPTCON.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'CPTCON', INFO, 0, ' ', N, N, -1, -1,
- $ -1, IMAT, NFAIL, NERRS, NOUT )
- *
- RESULT( 7 ) = SGET06( RCOND, RCONDC )
- *
- * Print the test ratio if greater than or equal to THRESH.
- *
- IF( RESULT( 7 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )N, IMAT, 7, RESULT( 7 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- 110 CONTINUE
- 120 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( ' N =', I5, ', type ', I2, ', test ', I2, ', ratio = ',
- $ G12.5 )
- 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS =', I3,
- $ ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
- RETURN
- *
- * End of CCHKPT
- *
- END
|