|
- *> \brief \b DLAQZ1
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAQZ1 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz1.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz1.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz1.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
- * $ V )
- * IMPLICIT NONE
- *
- * Arguments
- * INTEGER, INTENT( IN ) :: LDA, LDB
- * DOUBLE PRECISION, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1,
- * $ SR2, SI, BETA1, BETA2
- * DOUBLE PRECISION, INTENT( OUT ) :: V( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Given a 3-by-3 matrix pencil (A,B), DLAQZ1 sets v to a
- *> scalar multiple of the first column of the product
- *>
- *> (*) K = (A - (beta2*sr2 - i*si)*B)*B^(-1)*(beta1*A - (sr2 + i*si2)*B)*B^(-1).
- *>
- *> It is assumed that either
- *>
- *> 1) sr1 = sr2
- *> or
- *> 2) si = 0.
- *>
- *> This is useful for starting double implicit shift bulges
- *> in the QZ algorithm.
- *> \endverbatim
- *
- *
- * Arguments:
- * ==========
- *
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The 3-by-3 matrix A in (*).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A as declared in
- *> the calling procedure.
- *> \endverbatim
- *
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,N)
- *> The 3-by-3 matrix B in (*).
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B as declared in
- *> the calling procedure.
- *> \endverbatim
- *>
- *> \param[in] SR1
- *> \verbatim
- *> SR1 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] SR2
- *> \verbatim
- *> SR2 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] SI
- *> \verbatim
- *> SI is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] BETA1
- *> \verbatim
- *> BETA1 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[in] BETA2
- *> \verbatim
- *> BETA2 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is DOUBLE PRECISION array, dimension (N)
- *> A scalar multiple of the first column of the
- *> matrix K in (*).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Thijs Steel, KU Leuven
- *
- *> \date May 2020
- *
- *> \ingroup doubleGEcomputational
- *>
- * =====================================================================
- SUBROUTINE DLAQZ1( A, LDA, B, LDB, SR1, SR2, SI, BETA1, BETA2,
- $ V )
- IMPLICIT NONE
- *
- * Arguments
- INTEGER, INTENT( IN ) :: LDA, LDB
- DOUBLE PRECISION, INTENT( IN ) :: A( LDA, * ), B( LDB, * ), SR1,
- $ SR2, SI, BETA1, BETA2
- DOUBLE PRECISION, INTENT( OUT ) :: V( * )
- *
- * Parameters
- DOUBLE PRECISION :: ZERO, ONE, HALF
- PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
- *
- * Local scalars
- DOUBLE PRECISION :: W( 2 ), SAFMIN, SAFMAX, SCALE1, SCALE2
- *
- * External Functions
- DOUBLE PRECISION, EXTERNAL :: DLAMCH
- LOGICAL, EXTERNAL :: DISNAN
- *
- SAFMIN = DLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE/SAFMIN
- *
- * Calculate first shifted vector
- *
- W( 1 ) = BETA1*A( 1, 1 )-SR1*B( 1, 1 )
- W( 2 ) = BETA1*A( 2, 1 )-SR1*B( 2, 1 )
- SCALE1 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
- IF( SCALE1 .GE. SAFMIN .AND. SCALE1 .LE. SAFMAX ) THEN
- W( 1 ) = W( 1 )/SCALE1
- W( 2 ) = W( 2 )/SCALE1
- END IF
- *
- * Solve linear system
- *
- W( 2 ) = W( 2 )/B( 2, 2 )
- W( 1 ) = ( W( 1 )-B( 1, 2 )*W( 2 ) )/B( 1, 1 )
- SCALE2 = SQRT( ABS( W( 1 ) ) ) * SQRT( ABS( W( 2 ) ) )
- IF( SCALE2 .GE. SAFMIN .AND. SCALE2 .LE. SAFMAX ) THEN
- W( 1 ) = W( 1 )/SCALE2
- W( 2 ) = W( 2 )/SCALE2
- END IF
- *
- * Apply second shift
- *
- V( 1 ) = BETA2*( A( 1, 1 )*W( 1 )+A( 1, 2 )*W( 2 ) )-SR2*( B( 1,
- $ 1 )*W( 1 )+B( 1, 2 )*W( 2 ) )
- V( 2 ) = BETA2*( A( 2, 1 )*W( 1 )+A( 2, 2 )*W( 2 ) )-SR2*( B( 2,
- $ 1 )*W( 1 )+B( 2, 2 )*W( 2 ) )
- V( 3 ) = BETA2*( A( 3, 1 )*W( 1 )+A( 3, 2 )*W( 2 ) )-SR2*( B( 3,
- $ 1 )*W( 1 )+B( 3, 2 )*W( 2 ) )
- *
- * Account for imaginary part
- *
- V( 1 ) = V( 1 )+SI*SI*B( 1, 1 )/SCALE1/SCALE2
- *
- * Check for overflow
- *
- IF( ABS( V( 1 ) ).GT.SAFMAX .OR. ABS( V( 2 ) ) .GT. SAFMAX .OR.
- $ ABS( V( 3 ) ).GT.SAFMAX .OR. DISNAN( V( 1 ) ) .OR.
- $ DISNAN( V( 2 ) ) .OR. DISNAN( V( 3 ) ) ) THEN
- V( 1 ) = ZERO
- V( 2 ) = ZERO
- V( 3 ) = ZERO
- END IF
- *
- * End of DLAQZ1
- *
- END SUBROUTINE
|