|
- *> \brief \b CTZRQF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CTZRQF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctzrqf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctzrqf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctzrqf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), TAU( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine CTZRZF.
- *>
- *> CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
- *> to upper triangular form by means of unitary transformations.
- *>
- *> The upper trapezoidal matrix A is factored as
- *>
- *> A = ( R 0 ) * Z,
- *>
- *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
- *> triangular matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= M.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the leading M-by-N upper trapezoidal part of the
- *> array A must contain the matrix to be factorized.
- *> On exit, the leading M-by-M upper triangular part of A
- *> contains the upper triangular matrix R, and elements M+1 to
- *> N of the first M rows of A, with the array TAU, represent the
- *> unitary matrix Z as a product of M elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (M)
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The factorization is obtained by Householder's method. The kth
- *> transformation matrix, Z( k ), whose conjugate transpose is used to
- *> introduce zeros into the (m - k + 1)th row of A, is given in the form
- *>
- *> Z( k ) = ( I 0 ),
- *> ( 0 T( k ) )
- *>
- *> where
- *>
- *> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
- *> ( 0 )
- *> ( z( k ) )
- *>
- *> tau is a scalar and z( k ) is an ( n - m ) element vector.
- *> tau and z( k ) are chosen to annihilate the elements of the kth row
- *> of X.
- *>
- *> The scalar tau is returned in the kth element of TAU and the vector
- *> u( k ) in the kth row of A, such that the elements of z( k ) are
- *> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
- *> the upper triangular part of A.
- *>
- *> Z is given by
- *>
- *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), TAU( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX CONE, CZERO
- PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
- $ CZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, K, M1
- COMPLEX ALPHA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX, MIN
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CCOPY, CGEMV, CGERC, CLACGV, CLARFG,
- $ XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.M ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CTZRQF', -INFO )
- RETURN
- END IF
- *
- * Perform the factorization.
- *
- IF( M.EQ.0 )
- $ RETURN
- IF( M.EQ.N ) THEN
- DO 10 I = 1, N
- TAU( I ) = CZERO
- 10 CONTINUE
- ELSE
- M1 = MIN( M+1, N )
- DO 20 K = M, 1, -1
- *
- * Use a Householder reflection to zero the kth row of A.
- * First set up the reflection.
- *
- A( K, K ) = CONJG( A( K, K ) )
- CALL CLACGV( N-M, A( K, M1 ), LDA )
- ALPHA = A( K, K )
- CALL CLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
- A( K, K ) = ALPHA
- TAU( K ) = CONJG( TAU( K ) )
- *
- IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
- *
- * We now perform the operation A := A*P( k )**H.
- *
- * Use the first ( k - 1 ) elements of TAU to store a( k ),
- * where a( k ) consists of the first ( k - 1 ) elements of
- * the kth column of A. Also let B denote the first
- * ( k - 1 ) rows of the last ( n - m ) columns of A.
- *
- CALL CCOPY( K-1, A( 1, K ), 1, TAU, 1 )
- *
- * Form w = a( k ) + B*z( k ) in TAU.
- *
- CALL CGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
- $ LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
- *
- * Now form a( k ) := a( k ) - conjg(tau)*w
- * and B := B - conjg(tau)*w*z( k )**H.
- *
- CALL CAXPY( K-1, -CONJG( TAU( K ) ), TAU, 1, A( 1, K ),
- $ 1 )
- CALL CGERC( K-1, N-M, -CONJG( TAU( K ) ), TAU, 1,
- $ A( K, M1 ), LDA, A( 1, M1 ), LDA )
- END IF
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of CTZRQF
- *
- END
|