|
- /*******************************************************************************
- * Copyright (C) 2009-2011 Intel Corporation. All Rights Reserved.
- * The information and material ("Material") provided below is owned by Intel
- * Corporation or its suppliers or licensors, and title to such Material remains
- * with Intel Corporation or its suppliers or licensors. The Material contains
- * proprietary information of Intel or its suppliers and licensors. The Material
- * is protected by worldwide copyright laws and treaty provisions. No part of
- * the Material may be copied, reproduced, published, uploaded, posted,
- * transmitted, or distributed in any way without Intel's prior express written
- * permission. No license under any patent, copyright or other intellectual
- * property rights in the Material is granted to or conferred upon you, either
- * expressly, by implication, inducement, estoppel or otherwise. Any license
- * under such intellectual property rights must be express and approved by Intel
- * in writing.
- *
- ********************************************************************************
- */
- /*
- LAPACKE_dgesv Example.
- ======================
-
- The program computes the solution to the system of linear
- equations with a square matrix A and multiple
- right-hand sides B, where A is the coefficient matrix:
-
- 6.80 -6.05 -0.45 8.32 -9.67
- -2.11 -3.30 2.58 2.71 -5.14
- 5.66 5.36 -2.70 4.35 -7.26
- 5.97 -4.44 0.27 -7.17 6.08
- 8.23 1.08 9.04 2.14 -6.87
-
- and B is the right-hand side matrix:
-
- 4.02 -1.56 9.81
- 6.19 4.00 -4.09
- -8.22 -8.67 -4.57
- -7.57 1.75 -8.61
- -3.03 2.86 8.99
-
- Description.
- ============
-
- The routine solves for X the system of linear equations A*X = B,
- where A is an n-by-n matrix, the columns of matrix B are individual
- right-hand sides, and the columns of X are the corresponding
- solutions.
-
- The LU decomposition with partial pivoting and row interchanges is
- used to factor A as A = P*L*U, where P is a permutation matrix, L
- is unit lower triangular, and U is upper triangular. The factored
- form of A is then used to solve the system of equations A*X = B.
-
- Example Program Results.
- ========================
-
- LAPACKE_dgesv (row-major, high-level) Example Program Results
-
- Solution
- -0.80 -0.39 0.96
- -0.70 -0.55 0.22
- 0.59 0.84 1.90
- 1.32 -0.10 5.36
- 0.57 0.11 4.04
-
- Details of LU factorization
- 8.23 1.08 9.04 2.14 -6.87
- 0.83 -6.94 -7.92 6.55 -3.99
- 0.69 -0.67 -14.18 7.24 -5.19
- 0.73 0.75 0.02 -13.82 14.19
- -0.26 0.44 -0.59 -0.34 -3.43
-
- Pivot indices
- 5 5 3 4 5
- */
- #include <stdlib.h>
- #include <stdio.h>
- #include "lapacke.h"
-
- /* Auxiliary routines prototypes */
- extern void print_matrix( char* desc, lapack_int m, lapack_int n, double* a, lapack_int lda );
- extern void print_int_vector( char* desc, lapack_int n, lapack_int* a );
-
- /* Parameters */
- #define N 5
- #define NRHS 3
- #define LDA N
- #define LDB NRHS
-
- /* Main program */
- int main() {
- /* Locals */
- lapack_int n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
- /* Local arrays */
- lapack_int ipiv[N];
- double a[LDA*N] = {
- 6.80, -6.05, -0.45, 8.32, -9.67,
- -2.11, -3.30, 2.58, 2.71, -5.14,
- 5.66, 5.36, -2.70, 4.35, -7.26,
- 5.97, -4.44, 0.27, -7.17, 6.08,
- 8.23, 1.08, 9.04, 2.14, -6.87
- };
- double b[LDB*N] = {
- 4.02, -1.56, 9.81,
- 6.19, 4.00, -4.09,
- -8.22, -8.67, -4.57,
- -7.57, 1.75, -8.61,
- -3.03, 2.86, 8.99
- };
- /* Print Entry Matrix */
- print_matrix( "Entry Matrix A", n, n, a, lda );
- /* Print Right Rand Side */
- print_matrix( "Right Rand Side", n, nrhs, b, ldb );
- printf( "\n" );
- /* Executable statements */
- printf( "LAPACKE_dgesv (row-major, high-level) Example Program Results\n" );
- /* Solve the equations A*X = B */
- info = LAPACKE_dgesv( LAPACK_ROW_MAJOR, n, nrhs, a, lda, ipiv,
- b, ldb );
- /* Check for the exact singularity */
- if( info > 0 ) {
- printf( "The diagonal element of the triangular factor of A,\n" );
- printf( "U(%i,%i) is zero, so that A is singular;\n", info, info );
- printf( "the solution could not be computed.\n" );
- exit( 1 );
- }
- /* Print solution */
- print_matrix( "Solution", n, nrhs, b, ldb );
- /* Print details of LU factorization */
- print_matrix( "Details of LU factorization", n, n, a, lda );
- /* Print pivot indices */
- print_int_vector( "Pivot indices", n, ipiv );
- exit( 0 );
- } /* End of LAPACKE_dgesv Example */
-
- /* Auxiliary routine: printing a matrix */
- void print_matrix( char* desc, lapack_int m, lapack_int n, double* a, lapack_int lda ) {
- lapack_int i, j;
- printf( "\n %s\n", desc );
- for( i = 0; i < m; i++ ) {
- for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
- printf( "\n" );
- }
- }
-
- /* Auxiliary routine: printing a vector of integers */
- void print_int_vector( char* desc, lapack_int n, lapack_int* a ) {
- lapack_int j;
- printf( "\n %s\n", desc );
- for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
- printf( "\n" );
- }
|