|
- *> \brief \b CTRT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTRT02( UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B,
- * LDB, WORK, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER LDA, LDB, LDX, N, NRHS
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTRT02 computes the residual for the computed solution to a
- *> triangular system of linear equations A*x = b, A**T *x = b,
- *> or A**H *x = b. Here A is a triangular matrix, A**T is the transpose
- *> of A, A**H is the conjugate transpose of A, and x and b are N by NRHS
- *> matrices. The test ratio is the maximum over the number of right
- *> hand sides of
- *> norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
- *> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': A *x = b (No transpose)
- *> = 'T': A**T *x = b (Transpose)
- *> = 'C': A**H *x = b (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices X and B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The triangular matrix A. If UPLO = 'U', the leading n by n
- *> upper triangular part of the array A contains the upper
- *> triangular matrix, and the strictly lower triangular part of
- *> A is not referenced. If UPLO = 'L', the leading n by n lower
- *> triangular part of the array A contains the lower triangular
- *> matrix, and the strictly upper triangular part of A is not
- *> referenced. If DIAG = 'U', the diagonal elements of A are
- *> also not referenced and are assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The maximum over the number of right hand sides of
- *> norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CTRT02( UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B,
- $ LDB, WORK, RWORK, RESID )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER LDA, LDB, LDX, N, NRHS
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- REAL ANORM, BNORM, EPS, XNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANTR, SCASUM, SLAMCH
- EXTERNAL LSAME, CLANTR, SCASUM, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CCOPY, CTRMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0 or NRHS = 0
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Compute the 1-norm of A or A**H.
- *
- IF( LSAME( TRANS, 'N' ) ) THEN
- ANORM = CLANTR( '1', UPLO, DIAG, N, N, A, LDA, RWORK )
- ELSE
- ANORM = CLANTR( 'I', UPLO, DIAG, N, N, A, LDA, RWORK )
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Compute the maximum over the number of right hand sides of
- * norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS )
- *
- RESID = ZERO
- DO 10 J = 1, NRHS
- CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
- CALL CTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
- CALL CAXPY( N, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
- BNORM = SCASUM( N, WORK, 1 )
- XNORM = SCASUM( N, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
- END IF
- 10 CONTINUE
- *
- RETURN
- *
- * End of CTRT02
- *
- END
|