|
- *> \brief <b> DGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGESVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
- * EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
- * WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER EQUED, FACT, TRANS
- * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- * $ BERR( * ), C( * ), FERR( * ), R( * ),
- * $ WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGESVX uses the LU factorization to compute the solution to a real
- *> system of linear equations
- *> A * X = B,
- *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
- *>
- *> Error bounds on the solution and a condition estimate are also
- *> provided.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
- *> the system:
- *> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
- *> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
- *> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
- *> Whether or not the system will be equilibrated depends on the
- *> scaling of the matrix A, but if equilibration is used, A is
- *> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
- *> or diag(C)*B (if TRANS = 'T' or 'C').
- *>
- *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
- *> matrix A (after equilibration if FACT = 'E') as
- *> A = P * L * U,
- *> where P is a permutation matrix, L is a unit lower triangular
- *> matrix, and U is upper triangular.
- *>
- *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
- *> returns with INFO = i. Otherwise, the factored form of A is used
- *> to estimate the condition number of the matrix A. If the
- *> reciprocal of the condition number is less than machine precision,
- *> INFO = N+1 is returned as a warning, but the routine still goes on
- *> to solve for X and compute error bounds as described below.
- *>
- *> 4. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 5. Iterative refinement is applied to improve the computed solution
- *> matrix and calculate error bounds and backward error estimates
- *> for it.
- *>
- *> 6. If equilibration was used, the matrix X is premultiplied by
- *> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
- *> that it solves the original system before equilibration.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of the matrix A is
- *> supplied on entry, and if not, whether the matrix A should be
- *> equilibrated before it is factored.
- *> = 'F': On entry, AF and IPIV contain the factored form of A.
- *> If EQUED is not 'N', the matrix A has been
- *> equilibrated with scaling factors given by R and C.
- *> A, AF, and IPIV are not modified.
- *> = 'N': The matrix A will be copied to AF and factored.
- *> = 'E': The matrix A will be equilibrated if necessary, then
- *> copied to AF and factored.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
- *> not 'N', then A must have been equilibrated by the scaling
- *> factors in R and/or C. A is not modified if FACT = 'F' or
- *> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
- *>
- *> On exit, if EQUED .ne. 'N', A is scaled as follows:
- *> EQUED = 'R': A := diag(R) * A
- *> EQUED = 'C': A := A * diag(C)
- *> EQUED = 'B': A := diag(R) * A * diag(C).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
- *> If FACT = 'F', then AF is an input argument and on entry
- *> contains the factors L and U from the factorization
- *> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
- *> AF is the factored form of the equilibrated matrix A.
- *>
- *> If FACT = 'N', then AF is an output argument and on exit
- *> returns the factors L and U from the factorization A = P*L*U
- *> of the original matrix A.
- *>
- *> If FACT = 'E', then AF is an output argument and on exit
- *> returns the factors L and U from the factorization A = P*L*U
- *> of the equilibrated matrix A (see the description of A for
- *> the form of the equilibrated matrix).
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> If FACT = 'F', then IPIV is an input argument and on entry
- *> contains the pivot indices from the factorization A = P*L*U
- *> as computed by DGETRF; row i of the matrix was interchanged
- *> with row IPIV(i).
- *>
- *> If FACT = 'N', then IPIV is an output argument and on exit
- *> contains the pivot indices from the factorization A = P*L*U
- *> of the original matrix A.
- *>
- *> If FACT = 'E', then IPIV is an output argument and on exit
- *> contains the pivot indices from the factorization A = P*L*U
- *> of the equilibrated matrix A.
- *> \endverbatim
- *>
- *> \param[in,out] EQUED
- *> \verbatim
- *> EQUED is CHARACTER*1
- *> Specifies the form of equilibration that was done.
- *> = 'N': No equilibration (always true if FACT = 'N').
- *> = 'R': Row equilibration, i.e., A has been premultiplied by
- *> diag(R).
- *> = 'C': Column equilibration, i.e., A has been postmultiplied
- *> by diag(C).
- *> = 'B': Both row and column equilibration, i.e., A has been
- *> replaced by diag(R) * A * diag(C).
- *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
- *> output argument.
- *> \endverbatim
- *>
- *> \param[in,out] R
- *> \verbatim
- *> R is DOUBLE PRECISION array, dimension (N)
- *> The row scale factors for A. If EQUED = 'R' or 'B', A is
- *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
- *> is not accessed. R is an input argument if FACT = 'F';
- *> otherwise, R is an output argument. If FACT = 'F' and
- *> EQUED = 'R' or 'B', each element of R must be positive.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (N)
- *> The column scale factors for A. If EQUED = 'C' or 'B', A is
- *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
- *> is not accessed. C is an input argument if FACT = 'F';
- *> otherwise, C is an output argument. If FACT = 'F' and
- *> EQUED = 'C' or 'B', each element of C must be positive.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit,
- *> if EQUED = 'N', B is not modified;
- *> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
- *> diag(R)*B;
- *> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
- *> overwritten by diag(C)*B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
- *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
- *> to the original system of equations. Note that A and B are
- *> modified on exit if EQUED .ne. 'N', and the solution to the
- *> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
- *> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
- *> and EQUED = 'R' or 'B'.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The estimate of the reciprocal condition number of the matrix
- *> A after equilibration (if done). If RCOND is less than the
- *> machine precision (in particular, if RCOND = 0), the matrix
- *> is singular to working precision. This condition is
- *> indicated by a return code of INFO > 0.
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,4*N))
- *> On exit, WORK(1) contains the reciprocal pivot growth
- *> factor norm(A)/norm(U). The "max absolute element" norm is
- *> used. If WORK(1) is much less than 1, then the stability
- *> of the LU factorization of the (equilibrated) matrix A
- *> could be poor. This also means that the solution X, condition
- *> estimator RCOND, and forward error bound FERR could be
- *> unreliable. If factorization fails with 0<INFO<=N, then
- *> WORK(1) contains the reciprocal pivot growth factor for the
- *> leading INFO columns of A.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= N: U(i,i) is exactly zero. The factorization has
- *> been completed, but the factor U is exactly
- *> singular, so the solution and error bounds
- *> could not be computed. RCOND = 0 is returned.
- *> = N+1: U is nonsingular, but RCOND is less than machine
- *> precision, meaning that the matrix is singular
- *> to working precision. Nevertheless, the
- *> solution and error bounds are computed because
- *> there are a number of situations where the
- *> computed solution can be more accurate than the
- *> value of RCOND would suggest.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleGEsolve
- *
- * =====================================================================
- SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
- $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
- $ WORK, IWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER EQUED, FACT, TRANS
- INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- $ BERR( * ), C( * ), FERR( * ), R( * ),
- $ WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
- CHARACTER NORM
- INTEGER I, INFEQU, J
- DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
- $ ROWCND, RPVGRW, SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANGE, DLANTR
- EXTERNAL LSAME, DLAMCH, DLANGE, DLANTR
- * ..
- * .. External Subroutines ..
- EXTERNAL DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
- $ DLAQGE, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- NOTRAN = LSAME( TRANS, 'N' )
- IF( NOFACT .OR. EQUIL ) THEN
- EQUED = 'N'
- ROWEQU = .FALSE.
- COLEQU = .FALSE.
- ELSE
- ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
- COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
- SMLNUM = DLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- END IF
- *
- * Test the input parameters.
- *
- IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
- $ THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
- $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
- INFO = -10
- ELSE
- IF( ROWEQU ) THEN
- RCMIN = BIGNUM
- RCMAX = ZERO
- DO 10 J = 1, N
- RCMIN = MIN( RCMIN, R( J ) )
- RCMAX = MAX( RCMAX, R( J ) )
- 10 CONTINUE
- IF( RCMIN.LE.ZERO ) THEN
- INFO = -11
- ELSE IF( N.GT.0 ) THEN
- ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
- ELSE
- ROWCND = ONE
- END IF
- END IF
- IF( COLEQU .AND. INFO.EQ.0 ) THEN
- RCMIN = BIGNUM
- RCMAX = ZERO
- DO 20 J = 1, N
- RCMIN = MIN( RCMIN, C( J ) )
- RCMAX = MAX( RCMAX, C( J ) )
- 20 CONTINUE
- IF( RCMIN.LE.ZERO ) THEN
- INFO = -12
- ELSE IF( N.GT.0 ) THEN
- COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
- ELSE
- COLCND = ONE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -14
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -16
- END IF
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGESVX', -INFO )
- RETURN
- END IF
- *
- IF( EQUIL ) THEN
- *
- * Compute row and column scalings to equilibrate the matrix A.
- *
- CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
- IF( INFEQU.EQ.0 ) THEN
- *
- * Equilibrate the matrix.
- *
- CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
- $ EQUED )
- ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
- COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
- END IF
- END IF
- *
- * Scale the right hand side.
- *
- IF( NOTRAN ) THEN
- IF( ROWEQU ) THEN
- DO 40 J = 1, NRHS
- DO 30 I = 1, N
- B( I, J ) = R( I )*B( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- ELSE IF( COLEQU ) THEN
- DO 60 J = 1, NRHS
- DO 50 I = 1, N
- B( I, J ) = C( I )*B( I, J )
- 50 CONTINUE
- 60 CONTINUE
- END IF
- *
- IF( NOFACT .OR. EQUIL ) THEN
- *
- * Compute the LU factorization of A.
- *
- CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
- CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 ) THEN
- *
- * Compute the reciprocal pivot growth factor of the
- * leading rank-deficient INFO columns of A.
- *
- RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
- $ WORK )
- IF( RPVGRW.EQ.ZERO ) THEN
- RPVGRW = ONE
- ELSE
- RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
- END IF
- WORK( 1 ) = RPVGRW
- RCOND = ZERO
- RETURN
- END IF
- END IF
- *
- * Compute the norm of the matrix A and the
- * reciprocal pivot growth factor RPVGRW.
- *
- IF( NOTRAN ) THEN
- NORM = '1'
- ELSE
- NORM = 'I'
- END IF
- ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
- RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK )
- IF( RPVGRW.EQ.ZERO ) THEN
- RPVGRW = ONE
- ELSE
- RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
- END IF
- *
- * Compute the reciprocal of the condition number of A.
- *
- CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
- *
- * Compute the solution matrix X.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
- *
- * Use iterative refinement to improve the computed solution and
- * compute error bounds and backward error estimates for it.
- *
- CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
- $ LDX, FERR, BERR, WORK, IWORK, INFO )
- *
- * Transform the solution matrix X to a solution of the original
- * system.
- *
- IF( NOTRAN ) THEN
- IF( COLEQU ) THEN
- DO 80 J = 1, NRHS
- DO 70 I = 1, N
- X( I, J ) = C( I )*X( I, J )
- 70 CONTINUE
- 80 CONTINUE
- DO 90 J = 1, NRHS
- FERR( J ) = FERR( J ) / COLCND
- 90 CONTINUE
- END IF
- ELSE IF( ROWEQU ) THEN
- DO 110 J = 1, NRHS
- DO 100 I = 1, N
- X( I, J ) = R( I )*X( I, J )
- 100 CONTINUE
- 110 CONTINUE
- DO 120 J = 1, NRHS
- FERR( J ) = FERR( J ) / ROWCND
- 120 CONTINUE
- END IF
- *
- WORK( 1 ) = RPVGRW
- *
- * Set INFO = N+1 if the matrix is singular to working precision.
- *
- IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
- $ INFO = N + 1
- RETURN
- *
- * End of DGESVX
- *
- END
|