|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static real c_b29 = 1.f;
-
- /* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
- rices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGEGV + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegv.f
- "> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegv.f
- "> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegv.f
- "> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, */
- /* VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) */
-
- /* CHARACTER JOBVL, JOBVR */
- /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
- /* REAL RWORK( * ) */
- /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
- /* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This routine is deprecated and has been replaced by routine CGGEV. */
- /* > */
- /* > CGEGV computes the eigenvalues and, optionally, the left and/or right */
- /* > eigenvectors of a complex matrix pair (A,B). */
- /* > Given two square matrices A and B, */
- /* > the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
- /* > eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
- /* > that */
- /* > A*x = lambda*B*x. */
- /* > */
- /* > An alternate form is to find the eigenvalues mu and corresponding */
- /* > eigenvectors y such that */
- /* > mu*A*y = B*y. */
- /* > */
- /* > These two forms are equivalent with mu = 1/lambda and x = y if */
- /* > neither lambda nor mu is zero. In order to deal with the case that */
- /* > lambda or mu is zero or small, two values alpha and beta are returned */
- /* > for each eigenvalue, such that lambda = alpha/beta and */
- /* > mu = beta/alpha. */
- /* > */
- /* > The vectors x and y in the above equations are right eigenvectors of */
- /* > the matrix pair (A,B). Vectors u and v satisfying */
- /* > u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */
- /* > are left eigenvectors of (A,B). */
- /* > */
- /* > Note: this routine performs "full balancing" on A and B */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBVL */
- /* > \verbatim */
- /* > JOBVL is CHARACTER*1 */
- /* > = 'N': do not compute the left generalized eigenvectors; */
- /* > = 'V': compute the left generalized eigenvectors (returned */
- /* > in VL). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVR */
- /* > \verbatim */
- /* > JOBVR is CHARACTER*1 */
- /* > = 'N': do not compute the right generalized eigenvectors; */
- /* > = 'V': compute the right generalized eigenvectors (returned */
- /* > in VR). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A, B, VL, and VR. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA, N) */
- /* > On entry, the matrix A. */
- /* > If JOBVL = 'V' or JOBVR = 'V', then on exit A */
- /* > contains the Schur form of A from the generalized Schur */
- /* > factorization of the pair (A,B) after balancing. If no */
- /* > eigenvectors were computed, then only the diagonal elements */
- /* > of the Schur form will be correct. See CGGHRD and CHGEQZ */
- /* > for details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB, N) */
- /* > On entry, the matrix B. */
- /* > If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
- /* > upper triangular matrix obtained from B in the generalized */
- /* > Schur factorization of the pair (A,B) after balancing. */
- /* > If no eigenvectors were computed, then only the diagonal */
- /* > elements of B will be correct. See CGGHRD and CHGEQZ for */
- /* > details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHA */
- /* > \verbatim */
- /* > ALPHA is COMPLEX array, dimension (N) */
- /* > The complex scalars alpha that define the eigenvalues of */
- /* > GNEP. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is COMPLEX array, dimension (N) */
- /* > The complex scalars beta that define the eigenvalues of GNEP. */
- /* > */
- /* > Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
- /* > represent the j-th eigenvalue of the matrix pair (A,B), in */
- /* > one of the forms lambda = alpha/beta or mu = beta/alpha. */
- /* > Since either lambda or mu may overflow, they should not, */
- /* > in general, be computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VL */
- /* > \verbatim */
- /* > VL is COMPLEX array, dimension (LDVL,N) */
- /* > If JOBVL = 'V', the left eigenvectors u(j) are stored */
- /* > in the columns of VL, in the same order as their eigenvalues. */
- /* > Each eigenvector is scaled so that its largest component has */
- /* > abs(real part) + abs(imag. part) = 1, except for eigenvectors */
- /* > corresponding to an eigenvalue with alpha = beta = 0, which */
- /* > are set to zero. */
- /* > Not referenced if JOBVL = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the matrix VL. LDVL >= 1, and */
- /* > if JOBVL = 'V', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VR */
- /* > \verbatim */
- /* > VR is COMPLEX array, dimension (LDVR,N) */
- /* > If JOBVR = 'V', the right eigenvectors x(j) are stored */
- /* > in the columns of VR, in the same order as their eigenvalues. */
- /* > Each eigenvector is scaled so that its largest component has */
- /* > abs(real part) + abs(imag. part) = 1, except for eigenvectors */
- /* > corresponding to an eigenvalue with alpha = beta = 0, which */
- /* > are set to zero. */
- /* > Not referenced if JOBVR = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the matrix VR. LDVR >= 1, and */
- /* > if JOBVR = 'V', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
- /* > For good performance, LWORK must generally be larger. */
- /* > To compute the optimal value of LWORK, call ILAENV to get */
- /* > blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: */
- /* > NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; */
- /* > The optimal LWORK is MAX( 2*N, N*(NB+1) ). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (8*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > =1,...,N: */
- /* > The QZ iteration failed. No eigenvectors have been */
- /* > calculated, but ALPHA(j) and BETA(j) should be */
- /* > correct for j=INFO+1,...,N. */
- /* > > N: errors that usually indicate LAPACK problems: */
- /* > =N+1: error return from CGGBAL */
- /* > =N+2: error return from CGEQRF */
- /* > =N+3: error return from CUNMQR */
- /* > =N+4: error return from CUNGQR */
- /* > =N+5: error return from CGGHRD */
- /* > =N+6: error return from CHGEQZ (other than failed */
- /* > iteration) */
- /* > =N+7: error return from CTGEVC */
- /* > =N+8: error return from CGGBAK (computing VL) */
- /* > =N+9: error return from CGGBAK (computing VR) */
- /* > =N+10: error return from CLASCL (various calls) */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexGEeigen */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Balancing */
- /* > --------- */
- /* > */
- /* > This driver calls CGGBAL to both permute and scale rows and columns */
- /* > of A and B. The permutations PL and PR are chosen so that PL*A*PR */
- /* > and PL*B*R will be upper triangular except for the diagonal blocks */
- /* > A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
- /* > possible. The diagonal scaling matrices DL and DR are chosen so */
- /* > that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
- /* > one (except for the elements that start out zero.) */
- /* > */
- /* > After the eigenvalues and eigenvectors of the balanced matrices */
- /* > have been computed, CGGBAK transforms the eigenvectors back to what */
- /* > they would have been (in perfect arithmetic) if they had not been */
- /* > balanced. */
- /* > */
- /* > Contents of A and B on Exit */
- /* > -------- -- - --- - -- ---- */
- /* > */
- /* > If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
- /* > both), then on exit the arrays A and B will contain the complex Schur */
- /* > form[*] of the "balanced" versions of A and B. If no eigenvectors */
- /* > are computed, then only the diagonal blocks will be correct. */
- /* > */
- /* > [*] In other words, upper triangular form. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void cgegv_(char *jobvl, char *jobvr, integer *n, complex *a,
- integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta,
- complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex *
- work, integer *lwork, real *rwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2, i__3, i__4;
- real r__1, r__2, r__3, r__4;
- complex q__1, q__2;
-
- /* Local variables */
- real absb, anrm, bnrm;
- integer itau;
- real temp;
- logical ilvl, ilvr;
- integer lopt;
- real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
- extern logical lsame_(char *, char *);
- integer ileft, iinfo, icols, iwork, irows, jc;
- extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, complex *, integer *,
- integer *), cggbal_(char *, integer *, complex *,
- integer *, complex *, integer *, integer *, integer *, real *,
- real *, real *, integer *);
- integer nb, in;
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- integer jr;
- extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, integer *, complex *,
- integer *, complex *, integer *, integer *);
- real salfai;
- extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
- complex *, complex *, integer *, integer *);
- real salfar;
- extern real slamch_(char *);
- extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
- *, integer *, complex *, integer *), claset_(char *,
- integer *, integer *, complex *, complex *, complex *, integer *);
- real safmin;
- extern /* Subroutine */ void ctgevc_(char *, char *, logical *, integer *,
- complex *, integer *, complex *, integer *, complex *, integer *,
- complex *, integer *, integer *, integer *, complex *, real *,
- integer *);
- real safmax;
- char chtemp[1];
- logical ldumma[1];
- extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
- integer *, integer *, complex *, integer *, complex *, integer *,
- complex *, complex *, complex *, integer *, complex *, integer *,
- complex *, integer *, real *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer ijobvl, iright;
- logical ilimit;
- integer ijobvr;
- extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
- complex *, integer *, complex *, complex *, integer *, integer *);
- integer lwkmin, nb1, nb2, nb3;
- extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- complex *, integer *, integer *);
- integer irwork, lwkopt;
- logical lquery;
- integer ihi, ilo;
- real eps;
- logical ilv;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alpha;
- --beta;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
- --rwork;
-
- /* Function Body */
- if (lsame_(jobvl, "N")) {
- ijobvl = 1;
- ilvl = FALSE_;
- } else if (lsame_(jobvl, "V")) {
- ijobvl = 2;
- ilvl = TRUE_;
- } else {
- ijobvl = -1;
- ilvl = FALSE_;
- }
-
- if (lsame_(jobvr, "N")) {
- ijobvr = 1;
- ilvr = FALSE_;
- } else if (lsame_(jobvr, "V")) {
- ijobvr = 2;
- ilvr = TRUE_;
- } else {
- ijobvr = -1;
- ilvr = FALSE_;
- }
- ilv = ilvl || ilvr;
-
- /* Test the input arguments */
-
- /* Computing MAX */
- i__1 = *n << 1;
- lwkmin = f2cmax(i__1,1);
- lwkopt = lwkmin;
- work[1].r = (real) lwkopt, work[1].i = 0.f;
- lquery = *lwork == -1;
- *info = 0;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -5;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
- *info = -11;
- } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
- *info = -13;
- } else if (*lwork < lwkmin && ! lquery) {
- *info = -15;
- }
-
- if (*info == 0) {
- nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)1);
- nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)1);
- /* Computing MAX */
- i__1 = f2cmax(nb1,nb2);
- nb = f2cmax(i__1,nb3);
- /* Computing MAX */
- i__1 = *n << 1, i__2 = *n * (nb + 1);
- lopt = f2cmax(i__1,i__2);
- work[1].r = (real) lopt, work[1].i = 0.f;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGEGV ", &i__1, 6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("E") * slamch_("B");
- safmin = slamch_("S");
- safmin += safmin;
- safmax = 1.f / safmin;
-
- /* Scale A */
-
- anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
- anrm1 = anrm;
- anrm2 = 1.f;
- if (anrm < 1.f) {
- if (safmax * anrm < 1.f) {
- anrm1 = safmin;
- anrm2 = safmax * anrm;
- }
- }
-
- if (anrm > 0.f) {
- clascl_("G", &c_n1, &c_n1, &anrm, &c_b29, n, n, &a[a_offset], lda, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 10;
- return;
- }
- }
-
- /* Scale B */
-
- bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
- bnrm1 = bnrm;
- bnrm2 = 1.f;
- if (bnrm < 1.f) {
- if (safmax * bnrm < 1.f) {
- bnrm1 = safmin;
- bnrm2 = safmax * bnrm;
- }
- }
-
- if (bnrm > 0.f) {
- clascl_("G", &c_n1, &c_n1, &bnrm, &c_b29, n, n, &b[b_offset], ldb, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 10;
- return;
- }
- }
-
- /* Permute the matrix to make it more nearly triangular */
- /* Also "balance" the matrix. */
-
- ileft = 1;
- iright = *n + 1;
- irwork = iright + *n;
- cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
- ileft], &rwork[iright], &rwork[irwork], &iinfo);
- if (iinfo != 0) {
- *info = *n + 1;
- goto L80;
- }
-
- /* Reduce B to triangular form, and initialize VL and/or VR */
-
- irows = ihi + 1 - ilo;
- if (ilv) {
- icols = *n + 1 - ilo;
- } else {
- icols = irows;
- }
- itau = 1;
- iwork = itau + irows;
- i__1 = *lwork + 1 - iwork;
- cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 2;
- goto L80;
- }
-
- i__1 = *lwork + 1 - iwork;
- cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
- iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 3;
- goto L80;
- }
-
- if (ilvl) {
- claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
- i__1 = irows - 1;
- i__2 = irows - 1;
- clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo +
- 1 + ilo * vl_dim1], ldvl);
- i__1 = *lwork + 1 - iwork;
- cungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
- itau], &work[iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 4;
- goto L80;
- }
- }
-
- if (ilvr) {
- claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
- }
-
- /* Reduce to generalized Hessenberg form */
-
- if (ilv) {
-
- /* Eigenvectors requested -- work on whole matrix. */
-
- cgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
- } else {
- cgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
- &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
- vr_offset], ldvr, &iinfo);
- }
- if (iinfo != 0) {
- *info = *n + 5;
- goto L80;
- }
-
- /* Perform QZ algorithm */
-
- iwork = itau;
- if (ilv) {
- *(unsigned char *)chtemp = 'S';
- } else {
- *(unsigned char *)chtemp = 'E';
- }
- i__1 = *lwork + 1 - iwork;
- chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[
- vr_offset], ldvr, &work[iwork], &i__1, &rwork[irwork], &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- if (iinfo > 0 && iinfo <= *n) {
- *info = iinfo;
- } else if (iinfo > *n && iinfo <= *n << 1) {
- *info = iinfo - *n;
- } else {
- *info = *n + 6;
- }
- goto L80;
- }
-
- if (ilv) {
-
- /* Compute Eigenvectors */
-
- if (ilvl) {
- if (ilvr) {
- *(unsigned char *)chtemp = 'B';
- } else {
- *(unsigned char *)chtemp = 'L';
- }
- } else {
- *(unsigned char *)chtemp = 'R';
- }
-
- ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
- &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
- iwork], &rwork[irwork], &iinfo);
- if (iinfo != 0) {
- *info = *n + 7;
- goto L80;
- }
-
- /* Undo balancing on VL and VR, rescale */
-
- if (ilvl) {
- cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
- &vl[vl_offset], ldvl, &iinfo);
- if (iinfo != 0) {
- *info = *n + 8;
- goto L80;
- }
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- temp = 0.f;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- i__3 = jr + jc * vl_dim1;
- r__3 = temp, r__4 = (r__1 = vl[i__3].r, abs(r__1)) + (
- r__2 = r_imag(&vl[jr + jc * vl_dim1]), abs(r__2));
- temp = f2cmax(r__3,r__4);
- /* L10: */
- }
- if (temp < safmin) {
- goto L30;
- }
- temp = 1.f / temp;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- i__3 = jr + jc * vl_dim1;
- i__4 = jr + jc * vl_dim1;
- q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
- vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
- /* L20: */
- }
- L30:
- ;
- }
- }
- if (ilvr) {
- cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
- &vr[vr_offset], ldvr, &iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- goto L80;
- }
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- temp = 0.f;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- i__3 = jr + jc * vr_dim1;
- r__3 = temp, r__4 = (r__1 = vr[i__3].r, abs(r__1)) + (
- r__2 = r_imag(&vr[jr + jc * vr_dim1]), abs(r__2));
- temp = f2cmax(r__3,r__4);
- /* L40: */
- }
- if (temp < safmin) {
- goto L60;
- }
- temp = 1.f / temp;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- i__3 = jr + jc * vr_dim1;
- i__4 = jr + jc * vr_dim1;
- q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
- vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
- /* L50: */
- }
- L60:
- ;
- }
- }
-
- /* End of eigenvector calculation */
-
- }
-
- /* Undo scaling in alpha, beta */
-
- /* Note: this does not give the alpha and beta for the unscaled */
- /* problem. */
-
- /* Un-scaling is limited to avoid underflow in alpha and beta */
- /* if they are significant. */
-
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- i__2 = jc;
- absar = (r__1 = alpha[i__2].r, abs(r__1));
- absai = (r__1 = r_imag(&alpha[jc]), abs(r__1));
- i__2 = jc;
- absb = (r__1 = beta[i__2].r, abs(r__1));
- i__2 = jc;
- salfar = anrm * alpha[i__2].r;
- salfai = anrm * r_imag(&alpha[jc]);
- i__2 = jc;
- sbeta = bnrm * beta[i__2].r;
- ilimit = FALSE_;
- scale = 1.f;
-
- /* Check for significant underflow in imaginary part of ALPHA */
-
- /* Computing MAX */
- r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
- absb;
- if (abs(salfai) < safmin && absai >= f2cmax(r__1,r__2)) {
- ilimit = TRUE_;
- /* Computing MAX */
- r__1 = safmin, r__2 = anrm2 * absai;
- scale = safmin / anrm1 / f2cmax(r__1,r__2);
- }
-
- /* Check for significant underflow in real part of ALPHA */
-
- /* Computing MAX */
- r__1 = safmin, r__2 = eps * absai, r__1 = f2cmax(r__1,r__2), r__2 = eps *
- absb;
- if (abs(salfar) < safmin && absar >= f2cmax(r__1,r__2)) {
- ilimit = TRUE_;
- /* Computing MAX */
- /* Computing MAX */
- r__3 = safmin, r__4 = anrm2 * absar;
- r__1 = scale, r__2 = safmin / anrm1 / f2cmax(r__3,r__4);
- scale = f2cmax(r__1,r__2);
- }
-
- /* Check for significant underflow in BETA */
-
- /* Computing MAX */
- r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
- absai;
- if (abs(sbeta) < safmin && absb >= f2cmax(r__1,r__2)) {
- ilimit = TRUE_;
- /* Computing MAX */
- /* Computing MAX */
- r__3 = safmin, r__4 = bnrm2 * absb;
- r__1 = scale, r__2 = safmin / bnrm1 / f2cmax(r__3,r__4);
- scale = f2cmax(r__1,r__2);
- }
-
- /* Check for possible overflow when limiting scaling */
-
- if (ilimit) {
- /* Computing MAX */
- r__1 = abs(salfar), r__2 = abs(salfai), r__1 = f2cmax(r__1,r__2),
- r__2 = abs(sbeta);
- temp = scale * safmin * f2cmax(r__1,r__2);
- if (temp > 1.f) {
- scale /= temp;
- }
- if (scale < 1.f) {
- ilimit = FALSE_;
- }
- }
-
- /* Recompute un-scaled ALPHA, BETA if necessary. */
-
- if (ilimit) {
- i__2 = jc;
- salfar = scale * alpha[i__2].r * anrm;
- salfai = scale * r_imag(&alpha[jc]) * anrm;
- i__2 = jc;
- q__2.r = scale * beta[i__2].r, q__2.i = scale * beta[i__2].i;
- q__1.r = bnrm * q__2.r, q__1.i = bnrm * q__2.i;
- sbeta = q__1.r;
- }
- i__2 = jc;
- q__1.r = salfar, q__1.i = salfai;
- alpha[i__2].r = q__1.r, alpha[i__2].i = q__1.i;
- i__2 = jc;
- beta[i__2].r = sbeta, beta[i__2].i = 0.f;
- /* L70: */
- }
-
- L80:
- work[1].r = (real) lwkopt, work[1].i = 0.f;
-
- return;
-
- /* End of CGEGV */
-
- } /* cgegv_ */
|