|
- *> \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLAQR5 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
- * H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
- * WV, LDWV, NH, WH, LDWH )
- *
- * .. Scalar Arguments ..
- * INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- * $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * COMPLEX H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
- * $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAQR5 called by CLAQR0 performs a
- *> single small-bulge multi-shift QR sweep.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is LOGICAL
- *> WANTT = .true. if the triangular Schur factor
- *> is being computed. WANTT is set to .false. otherwise.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> WANTZ = .true. if the unitary Schur factor is being
- *> computed. WANTZ is set to .false. otherwise.
- *> \endverbatim
- *>
- *> \param[in] KACC22
- *> \verbatim
- *> KACC22 is INTEGER with value 0, 1, or 2.
- *> Specifies the computation mode of far-from-diagonal
- *> orthogonal updates.
- *> = 0: CLAQR5 does not accumulate reflections and does not
- *> use matrix-matrix multiply to update far-from-diagonal
- *> matrix entries.
- *> = 1: CLAQR5 accumulates reflections and uses matrix-matrix
- *> multiply to update the far-from-diagonal matrix entries.
- *> = 2: Same as KACC22 = 1. This option used to enable exploiting
- *> the 2-by-2 structure during matrix multiplications, but
- *> this is no longer supported.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> N is the order of the Hessenberg matrix H upon which this
- *> subroutine operates.
- *> \endverbatim
- *>
- *> \param[in] KTOP
- *> \verbatim
- *> KTOP is INTEGER
- *> \endverbatim
- *>
- *> \param[in] KBOT
- *> \verbatim
- *> KBOT is INTEGER
- *> These are the first and last rows and columns of an
- *> isolated diagonal block upon which the QR sweep is to be
- *> applied. It is assumed without a check that
- *> either KTOP = 1 or H(KTOP,KTOP-1) = 0
- *> and
- *> either KBOT = N or H(KBOT+1,KBOT) = 0.
- *> \endverbatim
- *>
- *> \param[in] NSHFTS
- *> \verbatim
- *> NSHFTS is INTEGER
- *> NSHFTS gives the number of simultaneous shifts. NSHFTS
- *> must be positive and even.
- *> \endverbatim
- *>
- *> \param[in,out] S
- *> \verbatim
- *> S is COMPLEX array, dimension (NSHFTS)
- *> S contains the shifts of origin that define the multi-
- *> shift QR sweep. On output S may be reordered.
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is COMPLEX array, dimension (LDH,N)
- *> On input H contains a Hessenberg matrix. On output a
- *> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
- *> to the isolated diagonal block in rows and columns KTOP
- *> through KBOT.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> LDH is the leading dimension of H just as declared in the
- *> calling procedure. LDH >= MAX(1,N).
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ,IHIZ)
- *> If WANTZ = .TRUE., then the QR Sweep unitary
- *> similarity transformation is accumulated into
- *> Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
- *> If WANTZ = .FALSE., then Z is unreferenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> LDA is the leading dimension of Z just as declared in
- *> the calling procedure. LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is COMPLEX array, dimension (LDV,NSHFTS/2)
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> LDV is the leading dimension of V as declared in the
- *> calling procedure. LDV >= 3.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX array, dimension (LDU,2*NSHFTS)
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> LDU is the leading dimension of U just as declared in the
- *> in the calling subroutine. LDU >= 2*NSHFTS.
- *> \endverbatim
- *>
- *> \param[in] NV
- *> \verbatim
- *> NV is INTEGER
- *> NV is the number of rows in WV agailable for workspace.
- *> NV >= 1.
- *> \endverbatim
- *>
- *> \param[out] WV
- *> \verbatim
- *> WV is COMPLEX array, dimension (LDWV,2*NSHFTS)
- *> \endverbatim
- *>
- *> \param[in] LDWV
- *> \verbatim
- *> LDWV is INTEGER
- *> LDWV is the leading dimension of WV as declared in the
- *> in the calling subroutine. LDWV >= NV.
- *> \endverbatim
- *
- *> \param[in] NH
- *> \verbatim
- *> NH is INTEGER
- *> NH is the number of columns in array WH available for
- *> workspace. NH >= 1.
- *> \endverbatim
- *>
- *> \param[out] WH
- *> \verbatim
- *> WH is COMPLEX array, dimension (LDWH,NH)
- *> \endverbatim
- *>
- *> \param[in] LDWH
- *> \verbatim
- *> LDWH is INTEGER
- *> Leading dimension of WH just as declared in the
- *> calling procedure. LDWH >= 2*NSHFTS.
- *> \endverbatim
- *>
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date January 2021
- *
- *> \ingroup complexOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Karen Braman and Ralph Byers, Department of Mathematics,
- *> University of Kansas, USA
- *>
- *> Lars Karlsson, Daniel Kressner, and Bruno Lang
- *>
- *> Thijs Steel, Department of Computer science,
- *> KU Leuven, Belgium
- *
- *> \par References:
- * ================
- *>
- *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
- *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
- *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
- *> 929--947, 2002.
- *>
- *> Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed
- *> chains of bulges in multishift QR algorithms.
- *> ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014).
- *>
- * =====================================================================
- SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
- $ H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
- $ WV, LDWV, NH, WH, LDWH )
- IMPLICIT NONE
- *
- * -- LAPACK auxiliary routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- COMPLEX H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
- $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
- * ..
- *
- * ================================================================
- * .. Parameters ..
- COMPLEX ZERO, ONE
- PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ),
- $ ONE = ( 1.0e0, 0.0e0 ) )
- REAL RZERO, RONE
- PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0 )
- * ..
- * .. Local Scalars ..
- COMPLEX ALPHA, BETA, CDUM, REFSUM
- REAL H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
- $ SMLNUM, TST1, TST2, ULP
- INTEGER I2, I4, INCOL, J, JBOT, JCOL, JLEN,
- $ JROW, JTOP, K, K1, KDU, KMS, KRCOL,
- $ M, M22, MBOT, MTOP, NBMPS, NDCOL,
- $ NS, NU
- LOGICAL ACCUM, BMP22
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. Intrinsic Functions ..
- *
- INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, MOD, REAL
- * ..
- * .. Local Arrays ..
- COMPLEX VT( 3 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CLACPY, CLAQR1, CLARFG, CLASET, CTRMM,
- $ SLABAD
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * ==== If there are no shifts, then there is nothing to do. ====
- *
- IF( NSHFTS.LT.2 )
- $ RETURN
- *
- * ==== If the active block is empty or 1-by-1, then there
- * . is nothing to do. ====
- *
- IF( KTOP.GE.KBOT )
- $ RETURN
- *
- * ==== NSHFTS is supposed to be even, but if it is odd,
- * . then simply reduce it by one. ====
- *
- NS = NSHFTS - MOD( NSHFTS, 2 )
- *
- * ==== Machine constants for deflation ====
- *
- SAFMIN = SLAMCH( 'SAFE MINIMUM' )
- SAFMAX = RONE / SAFMIN
- CALL SLABAD( SAFMIN, SAFMAX )
- ULP = SLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( REAL( N ) / ULP )
- *
- * ==== Use accumulated reflections to update far-from-diagonal
- * . entries ? ====
- *
- ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
- *
- * ==== clear trash ====
- *
- IF( KTOP+2.LE.KBOT )
- $ H( KTOP+2, KTOP ) = ZERO
- *
- * ==== NBMPS = number of 2-shift bulges in the chain ====
- *
- NBMPS = NS / 2
- *
- * ==== KDU = width of slab ====
- *
- KDU = 4*NBMPS
- *
- * ==== Create and chase chains of NBMPS bulges ====
- *
- DO 180 INCOL = KTOP - 2*NBMPS + 1, KBOT - 2, 2*NBMPS
- *
- * JTOP = Index from which updates from the right start.
- *
- IF( ACCUM ) THEN
- JTOP = MAX( KTOP, INCOL )
- ELSE IF( WANTT ) THEN
- JTOP = 1
- ELSE
- JTOP = KTOP
- END IF
- *
- NDCOL = INCOL + KDU
- IF( ACCUM )
- $ CALL CLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
- *
- * ==== Near-the-diagonal bulge chase. The following loop
- * . performs the near-the-diagonal part of a small bulge
- * . multi-shift QR sweep. Each 4*NBMPS column diagonal
- * . chunk extends from column INCOL to column NDCOL
- * . (including both column INCOL and column NDCOL). The
- * . following loop chases a 2*NBMPS+1 column long chain of
- * . NBMPS bulges 2*NBMPS columns to the right. (INCOL
- * . may be less than KTOP and and NDCOL may be greater than
- * . KBOT indicating phantom columns from which to chase
- * . bulges before they are actually introduced or to which
- * . to chase bulges beyond column KBOT.) ====
- *
- DO 145 KRCOL = INCOL, MIN( INCOL+2*NBMPS-1, KBOT-2 )
- *
- * ==== Bulges number MTOP to MBOT are active double implicit
- * . shift bulges. There may or may not also be small
- * . 2-by-2 bulge, if there is room. The inactive bulges
- * . (if any) must wait until the active bulges have moved
- * . down the diagonal to make room. The phantom matrix
- * . paradigm described above helps keep track. ====
- *
- MTOP = MAX( 1, ( KTOP-KRCOL ) / 2+1 )
- MBOT = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 2 )
- M22 = MBOT + 1
- BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+2*( M22-1 ) ).EQ.
- $ ( KBOT-2 )
- *
- * ==== Generate reflections to chase the chain right
- * . one column. (The minimum value of K is KTOP-1.) ====
- *
- IF ( BMP22 ) THEN
- *
- * ==== Special case: 2-by-2 reflection at bottom treated
- * . separately ====
- *
- K = KRCOL + 2*( M22-1 )
- IF( K.EQ.KTOP-1 ) THEN
- CALL CLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ),
- $ S( 2*M22 ), V( 1, M22 ) )
- BETA = V( 1, M22 )
- CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- ELSE
- BETA = H( K+1, K )
- V( 2, M22 ) = H( K+2, K )
- CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- END IF
-
- *
- * ==== Perform update from right within
- * . computational window. ====
- *
- DO 30 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
- $ H( J, K+2 ) )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM
- H( J, K+2 ) = H( J, K+2 ) -
- $ REFSUM*CONJG( V( 2, M22 ) )
- 30 CONTINUE
- *
- * ==== Perform update from left within
- * . computational window. ====
- *
- IF( ACCUM ) THEN
- JBOT = MIN( NDCOL, KBOT )
- ELSE IF( WANTT ) THEN
- JBOT = N
- ELSE
- JBOT = KBOT
- END IF
- DO 40 J = K+1, JBOT
- REFSUM = CONJG( V( 1, M22 ) )*
- $ ( H( K+1, J )+CONJG( V( 2, M22 ) )*
- $ H( K+2, J ) )
- H( K+1, J ) = H( K+1, J ) - REFSUM
- H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
- 40 CONTINUE
- *
- * ==== The following convergence test requires that
- * . the tradition small-compared-to-nearby-diagonals
- * . criterion and the Ahues & Tisseur (LAWN 122, 1997)
- * . criteria both be satisfied. The latter improves
- * . accuracy in some examples. Falling back on an
- * . alternate convergence criterion when TST1 or TST2
- * . is zero (as done here) is traditional but probably
- * . unnecessary. ====
- *
- IF( K.GE.KTOP) THEN
- IF( H( K+1, K ).NE.ZERO ) THEN
- TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
- IF( TST1.EQ.RZERO ) THEN
- IF( K.GE.KTOP+1 )
- $ TST1 = TST1 + CABS1( H( K, K-1 ) )
- IF( K.GE.KTOP+2 )
- $ TST1 = TST1 + CABS1( H( K, K-2 ) )
- IF( K.GE.KTOP+3 )
- $ TST1 = TST1 + CABS1( H( K, K-3 ) )
- IF( K.LE.KBOT-2 )
- $ TST1 = TST1 + CABS1( H( K+2, K+1 ) )
- IF( K.LE.KBOT-3 )
- $ TST1 = TST1 + CABS1( H( K+3, K+1 ) )
- IF( K.LE.KBOT-4 )
- $ TST1 = TST1 + CABS1( H( K+4, K+1 ) )
- END IF
- IF( CABS1( H( K+1, K ) )
- $ .LE.MAX( SMLNUM, ULP*TST1 ) ) THEN
- H12 = MAX( CABS1( H( K+1, K ) ),
- $ CABS1( H( K, K+1 ) ) )
- H21 = MIN( CABS1( H( K+1, K ) ),
- $ CABS1( H( K, K+1 ) ) )
- H11 = MAX( CABS1( H( K+1, K+1 ) ),
- $ CABS1( H( K, K )-H( K+1, K+1 ) ) )
- H22 = MIN( CABS1( H( K+1, K+1 ) ),
- $ CABS1( H( K, K )-H( K+1, K+1 ) ) )
- SCL = H11 + H12
- TST2 = H22*( H11 / SCL )
- *
- IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
- $ MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
- END IF
- END IF
- END IF
- *
- * ==== Accumulate orthogonal transformations. ====
- *
- IF( ACCUM ) THEN
- KMS = K - INCOL
- DO 50 J = MAX( 1, KTOP-INCOL ), KDU
- REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
- $ V( 2, M22 )*U( J, KMS+2 ) )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
- U( J, KMS+2 ) = U( J, KMS+2 ) -
- $ REFSUM*CONJG( V( 2, M22 ) )
- 50 CONTINUE
- ELSE IF( WANTZ ) THEN
- DO 60 J = ILOZ, IHIZ
- REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
- $ Z( J, K+2 ) )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
- Z( J, K+2 ) = Z( J, K+2 ) -
- $ REFSUM*CONJG( V( 2, M22 ) )
- 60 CONTINUE
- END IF
- END IF
- *
- * ==== Normal case: Chain of 3-by-3 reflections ====
- *
- DO 80 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- IF( K.EQ.KTOP-1 ) THEN
- CALL CLAQR1( 3, H( KTOP, KTOP ), LDH, S( 2*M-1 ),
- $ S( 2*M ), V( 1, M ) )
- ALPHA = V( 1, M )
- CALL CLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
- ELSE
- *
- * ==== Perform delayed transformation of row below
- * . Mth bulge. Exploit fact that first two elements
- * . of row are actually zero. ====
- *
- REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 )
- H( K+3, K ) = -REFSUM
- H( K+3, K+1 ) = -REFSUM*CONJG( V( 2, M ) )
- H( K+3, K+2 ) = H( K+3, K+2 ) -
- $ REFSUM*CONJG( V( 3, M ) )
- *
- * ==== Calculate reflection to move
- * . Mth bulge one step. ====
- *
- BETA = H( K+1, K )
- V( 2, M ) = H( K+2, K )
- V( 3, M ) = H( K+3, K )
- CALL CLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
- *
- * ==== A Bulge may collapse because of vigilant
- * . deflation or destructive underflow. In the
- * . underflow case, try the two-small-subdiagonals
- * . trick to try to reinflate the bulge. ====
- *
- IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
- $ ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
- *
- * ==== Typical case: not collapsed (yet). ====
- *
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
- *
- * ==== Atypical case: collapsed. Attempt to
- * . reintroduce ignoring H(K+1,K) and H(K+2,K).
- * . If the fill resulting from the new
- * . reflector is too large, then abandon it.
- * . Otherwise, use the new one. ====
- *
- CALL CLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ),
- $ S( 2*M ), VT )
- ALPHA = VT( 1 )
- CALL CLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
- REFSUM = CONJG( VT( 1 ) )*
- $ ( H( K+1, K )+CONJG( VT( 2 ) )*
- $ H( K+2, K ) )
- *
- IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+
- $ CABS1( REFSUM*VT( 3 ) ).GT.ULP*
- $ ( CABS1( H( K, K ) )+CABS1( H( K+1,
- $ K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
- *
- * ==== Starting a new bulge here would
- * . create non-negligible fill. Use
- * . the old one with trepidation. ====
- *
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
- *
- * ==== Starting a new bulge here would
- * . create only negligible fill.
- * . Replace the old reflector with
- * . the new one. ====
- *
- H( K+1, K ) = H( K+1, K ) - REFSUM
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- V( 1, M ) = VT( 1 )
- V( 2, M ) = VT( 2 )
- V( 3, M ) = VT( 3 )
- END IF
- END IF
- END IF
- *
- * ==== Apply reflection from the right and
- * . the first column of update from the left.
- * . These updates are required for the vigilant
- * . deflation check. We still delay most of the
- * . updates from the left for efficiency. ====
- *
- DO 70 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
- $ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM
- H( J, K+2 ) = H( J, K+2 ) -
- $ REFSUM*CONJG( V( 2, M ) )
- H( J, K+3 ) = H( J, K+3 ) -
- $ REFSUM*CONJG( V( 3, M ) )
- 70 CONTINUE
- *
- * ==== Perform update from left for subsequent
- * . column. ====
- *
- REFSUM = CONJG( V( 1, M ) )*( H( K+1, K+1 )
- $ +CONJG( V( 2, M ) )*H( K+2, K+1 )
- $ +CONJG( V( 3, M ) )*H( K+3, K+1 ) )
- H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM
- H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*V( 2, M )
- H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*V( 3, M )
- *
- * ==== The following convergence test requires that
- * . the tradition small-compared-to-nearby-diagonals
- * . criterion and the Ahues & Tisseur (LAWN 122, 1997)
- * . criteria both be satisfied. The latter improves
- * . accuracy in some examples. Falling back on an
- * . alternate convergence criterion when TST1 or TST2
- * . is zero (as done here) is traditional but probably
- * . unnecessary. ====
- *
- IF( K.LT.KTOP)
- $ CYCLE
- IF( H( K+1, K ).NE.ZERO ) THEN
- TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
- IF( TST1.EQ.RZERO ) THEN
- IF( K.GE.KTOP+1 )
- $ TST1 = TST1 + CABS1( H( K, K-1 ) )
- IF( K.GE.KTOP+2 )
- $ TST1 = TST1 + CABS1( H( K, K-2 ) )
- IF( K.GE.KTOP+3 )
- $ TST1 = TST1 + CABS1( H( K, K-3 ) )
- IF( K.LE.KBOT-2 )
- $ TST1 = TST1 + CABS1( H( K+2, K+1 ) )
- IF( K.LE.KBOT-3 )
- $ TST1 = TST1 + CABS1( H( K+3, K+1 ) )
- IF( K.LE.KBOT-4 )
- $ TST1 = TST1 + CABS1( H( K+4, K+1 ) )
- END IF
- IF( CABS1( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
- $ THEN
- H12 = MAX( CABS1( H( K+1, K ) ),
- $ CABS1( H( K, K+1 ) ) )
- H21 = MIN( CABS1( H( K+1, K ) ),
- $ CABS1( H( K, K+1 ) ) )
- H11 = MAX( CABS1( H( K+1, K+1 ) ),
- $ CABS1( H( K, K )-H( K+1, K+1 ) ) )
- H22 = MIN( CABS1( H( K+1, K+1 ) ),
- $ CABS1( H( K, K )-H( K+1, K+1 ) ) )
- SCL = H11 + H12
- TST2 = H22*( H11 / SCL )
- *
- IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
- $ MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
- END IF
- END IF
- 80 CONTINUE
- *
- * ==== Multiply H by reflections from the left ====
- *
- IF( ACCUM ) THEN
- JBOT = MIN( NDCOL, KBOT )
- ELSE IF( WANTT ) THEN
- JBOT = N
- ELSE
- JBOT = KBOT
- END IF
- *
- DO 100 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
- REFSUM = CONJG( V( 1, M ) )*
- $ ( H( K+1, J )+CONJG( V( 2, M ) )*
- $ H( K+2, J )+CONJG( V( 3, M ) )*H( K+3, J ) )
- H( K+1, J ) = H( K+1, J ) - REFSUM
- H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
- H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
- 90 CONTINUE
- 100 CONTINUE
- *
- * ==== Accumulate orthogonal transformations. ====
- *
- IF( ACCUM ) THEN
- *
- * ==== Accumulate U. (If needed, update Z later
- * . with an efficient matrix-matrix
- * . multiply.) ====
- *
- DO 120 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- KMS = K - INCOL
- I2 = MAX( 1, KTOP-INCOL )
- I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
- I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
- DO 110 J = I2, I4
- REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
- $ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
- U( J, KMS+2 ) = U( J, KMS+2 ) -
- $ REFSUM*CONJG( V( 2, M ) )
- U( J, KMS+3 ) = U( J, KMS+3 ) -
- $ REFSUM*CONJG( V( 3, M ) )
- 110 CONTINUE
- 120 CONTINUE
- ELSE IF( WANTZ ) THEN
- *
- * ==== U is not accumulated, so update Z
- * . now by multiplying by reflections
- * . from the right. ====
- *
- DO 140 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- DO 130 J = ILOZ, IHIZ
- REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
- $ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
- Z( J, K+2 ) = Z( J, K+2 ) -
- $ REFSUM*CONJG( V( 2, M ) )
- Z( J, K+3 ) = Z( J, K+3 ) -
- $ REFSUM*CONJG( V( 3, M ) )
- 130 CONTINUE
- 140 CONTINUE
- END IF
- *
- * ==== End of near-the-diagonal bulge chase. ====
- *
- 145 CONTINUE
- *
- * ==== Use U (if accumulated) to update far-from-diagonal
- * . entries in H. If required, use U to update Z as
- * . well. ====
- *
- IF( ACCUM ) THEN
- IF( WANTT ) THEN
- JTOP = 1
- JBOT = N
- ELSE
- JTOP = KTOP
- JBOT = KBOT
- END IF
- K1 = MAX( 1, KTOP-INCOL )
- NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
- *
- * ==== Horizontal Multiply ====
- *
- DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
- JLEN = MIN( NH, JBOT-JCOL+1 )
- CALL CGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
- $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
- $ LDWH )
- CALL CLACPY( 'ALL', NU, JLEN, WH, LDWH,
- $ H( INCOL+K1, JCOL ), LDH )
- 150 CONTINUE
- *
- * ==== Vertical multiply ====
- *
- DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
- JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
- CALL CGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL CLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ H( JROW, INCOL+K1 ), LDH )
- 160 CONTINUE
- *
- * ==== Z multiply (also vertical) ====
- *
- IF( WANTZ ) THEN
- DO 170 JROW = ILOZ, IHIZ, NV
- JLEN = MIN( NV, IHIZ-JROW+1 )
- CALL CGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL CLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ Z( JROW, INCOL+K1 ), LDZ )
- 170 CONTINUE
- END IF
- END IF
- 180 CONTINUE
- *
- * ==== End of CLAQR5 ====
- *
- END
|