|
- *> \brief \b DDRVLS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
- * NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
- * COPYB, C, S, COPYS, WORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NM, NN, NNB, NNS, NOUT
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
- * $ NVAL( * ), NXVAL( * )
- * DOUBLE PRECISION A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
- * $ COPYS( * ), S( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DDRVLS tests the least squares driver routines DGELS, DGELSS, DGELSY,
- *> and DGELSD.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> The matrix of type j is generated as follows:
- *> j=1: A = U*D*V where U and V are random orthogonal matrices
- *> and D has random entries (> 0.1) taken from a uniform
- *> distribution (0,1). A is full rank.
- *> j=2: The same of 1, but A is scaled up.
- *> j=3: The same of 1, but A is scaled down.
- *> j=4: A = U*D*V where U and V are random orthogonal matrices
- *> and D has 3*min(M,N)/4 random entries (> 0.1) taken
- *> from a uniform distribution (0,1) and the remaining
- *> entries set to 0. A is rank-deficient.
- *> j=5: The same of 4, but A is scaled up.
- *> j=6: The same of 5, but A is scaled down.
- *> \endverbatim
- *>
- *> \param[in] NM
- *> \verbatim
- *> NM is INTEGER
- *> The number of values of M contained in the vector MVAL.
- *> \endverbatim
- *>
- *> \param[in] MVAL
- *> \verbatim
- *> MVAL is INTEGER array, dimension (NM)
- *> The values of the matrix row dimension M.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix column dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] NNB
- *> \verbatim
- *> NNB is INTEGER
- *> The number of values of NB and NX contained in the
- *> vectors NBVAL and NXVAL. The blocking parameters are used
- *> in pairs (NB,NX).
- *> \endverbatim
- *>
- *> \param[in] NBVAL
- *> \verbatim
- *> NBVAL is INTEGER array, dimension (NNB)
- *> The values of the blocksize NB.
- *> \endverbatim
- *>
- *> \param[in] NXVAL
- *> \verbatim
- *> NXVAL is INTEGER array, dimension (NNB)
- *> The values of the crossover point NX.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (MMAX*NMAX)
- *> where MMAX is the maximum value of M in MVAL and NMAX is the
- *> maximum value of N in NVAL.
- *> \endverbatim
- *>
- *> \param[out] COPYA
- *> \verbatim
- *> COPYA is DOUBLE PRECISION array, dimension (MMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
- *> where MMAX is the maximum value of M in MVAL and NSMAX is the
- *> maximum value of NRHS in NSVAL.
- *> \endverbatim
- *>
- *> \param[out] COPYB
- *> \verbatim
- *> COPYB is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension
- *> (min(MMAX,NMAX))
- *> \endverbatim
- *>
- *> \param[out] COPYS
- *> \verbatim
- *> COPYS is DOUBLE PRECISION array, dimension
- *> (min(MMAX,NMAX))
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array,
- *> dimension (MMAX*NMAX + 4*NMAX + MMAX).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (15*NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2015
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
- $ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
- $ COPYB, C, S, COPYS, WORK, IWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.6.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2015
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NM, NN, NNB, NNS, NOUT
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
- $ NVAL( * ), NXVAL( * )
- DOUBLE PRECISION A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
- $ COPYS( * ), S( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NTESTS
- PARAMETER ( NTESTS = 14 )
- INTEGER SMLSIZ
- PARAMETER ( SMLSIZ = 25 )
- DOUBLE PRECISION ONE, TWO, ZERO
- PARAMETER ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
- * ..
- * .. Local Scalars ..
- CHARACTER TRANS
- CHARACTER*3 PATH
- INTEGER CRANK, I, IM, IN, INB, INFO, INS, IRANK,
- $ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
- $ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
- $ NFAIL, NLVL, NRHS, NROWS, NRUN, RANK
- DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- DOUBLE PRECISION RESULT( NTESTS )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DASUM, DLAMCH, DQRT12, DQRT14, DQRT17
- EXTERNAL DASUM, DLAMCH, DQRT12, DQRT14, DQRT17
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DERRLS, DGELS,
- $ DGELSD, DGELSS, DGELSY, DGEMM, DLACPY,
- $ DLARNV, DLASRT, DQRT13, DQRT15, DQRT16, DSCAL,
- $ XLAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, INT, LOG, MAX, MIN, SQRT
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, IOUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, IOUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Double precision'
- PATH( 2: 3 ) = 'LS'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- EPS = DLAMCH( 'Epsilon' )
- *
- * Threshold for rank estimation
- *
- RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
- *
- * Test the error exits
- *
- CALL XLAENV( 2, 2 )
- CALL XLAENV( 9, SMLSIZ )
- IF( TSTERR )
- $ CALL DERRLS( PATH, NOUT )
- *
- * Print the header if NM = 0 or NN = 0 and THRESH = 0.
- *
- IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
- $ CALL ALAHD( NOUT, PATH )
- INFOT = 0
- CALL XLAENV( 2, 2 )
- CALL XLAENV( 9, SMLSIZ )
- *
- DO 150 IM = 1, NM
- M = MVAL( IM )
- LDA = MAX( 1, M )
- *
- DO 140 IN = 1, NN
- N = NVAL( IN )
- MNMIN = MIN( M, N )
- LDB = MAX( 1, M, N )
- *
- DO 130 INS = 1, NNS
- NRHS = NSVAL( INS )
- NLVL = MAX( INT( LOG( MAX( ONE, DBLE( MNMIN ) ) /
- $ DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1, 0 )
- LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
- $ M*N+4*MNMIN+MAX( M, N ), 12*MNMIN+2*MNMIN*SMLSIZ+
- $ 8*MNMIN*NLVL+MNMIN*NRHS+(SMLSIZ+1)**2 )
- *
- DO 120 IRANK = 1, 2
- DO 110 ISCALE = 1, 3
- ITYPE = ( IRANK-1 )*3 + ISCALE
- IF( .NOT.DOTYPE( ITYPE ) )
- $ GO TO 110
- *
- IF( IRANK.EQ.1 ) THEN
- *
- * Test DGELS
- *
- * Generate a matrix of scaling type ISCALE
- *
- CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
- $ ISEED )
- DO 40 INB = 1, NNB
- NB = NBVAL( INB )
- CALL XLAENV( 1, NB )
- CALL XLAENV( 3, NXVAL( INB ) )
- *
- DO 30 ITRAN = 1, 2
- IF( ITRAN.EQ.1 ) THEN
- TRANS = 'N'
- NROWS = M
- NCOLS = N
- ELSE
- TRANS = 'T'
- NROWS = N
- NCOLS = M
- END IF
- LDWORK = MAX( 1, NCOLS )
- *
- * Set up a consistent rhs
- *
- IF( NCOLS.GT.0 ) THEN
- CALL DLARNV( 2, ISEED, NCOLS*NRHS,
- $ WORK )
- CALL DSCAL( NCOLS*NRHS,
- $ ONE / DBLE( NCOLS ), WORK,
- $ 1 )
- END IF
- CALL DGEMM( TRANS, 'No transpose', NROWS,
- $ NRHS, NCOLS, ONE, COPYA, LDA,
- $ WORK, LDWORK, ZERO, B, LDB )
- CALL DLACPY( 'Full', NROWS, NRHS, B, LDB,
- $ COPYB, LDB )
- *
- * Solve LS or overdetermined system
- *
- IF( M.GT.0 .AND. N.GT.0 ) THEN
- CALL DLACPY( 'Full', M, N, COPYA, LDA,
- $ A, LDA )
- CALL DLACPY( 'Full', NROWS, NRHS,
- $ COPYB, LDB, B, LDB )
- END IF
- SRNAMT = 'DGELS '
- CALL DGELS( TRANS, M, N, NRHS, A, LDA, B,
- $ LDB, WORK, LWORK, INFO )
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DGELS ', INFO, 0,
- $ TRANS, M, N, NRHS, -1, NB,
- $ ITYPE, NFAIL, NERRS,
- $ NOUT )
- *
- * Check correctness of results
- *
- LDWORK = MAX( 1, NROWS )
- IF( NROWS.GT.0 .AND. NRHS.GT.0 )
- $ CALL DLACPY( 'Full', NROWS, NRHS,
- $ COPYB, LDB, C, LDB )
- CALL DQRT16( TRANS, M, N, NRHS, COPYA,
- $ LDA, B, LDB, C, LDB, WORK,
- $ RESULT( 1 ) )
- *
- IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
- $ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
- *
- * Solving LS system
- *
- RESULT( 2 ) = DQRT17( TRANS, 1, M, N,
- $ NRHS, COPYA, LDA, B, LDB,
- $ COPYB, LDB, C, WORK,
- $ LWORK )
- ELSE
- *
- * Solving overdetermined system
- *
- RESULT( 2 ) = DQRT14( TRANS, M, N,
- $ NRHS, COPYA, LDA, B, LDB,
- $ WORK, LWORK )
- END IF
- *
- * Print information about the tests that
- * did not pass the threshold.
- *
- DO 20 K = 1, 2
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )TRANS, M,
- $ N, NRHS, NB, ITYPE, K,
- $ RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 20 CONTINUE
- NRUN = NRUN + 2
- 30 CONTINUE
- 40 CONTINUE
- END IF
- *
- * Generate a matrix of scaling type ISCALE and rank
- * type IRANK.
- *
- CALL DQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
- $ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
- $ ISEED, WORK, LWORK )
- *
- * workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
- *
- LDWORK = MAX( 1, M )
- *
- * Loop for testing different block sizes.
- *
- DO 100 INB = 1, NNB
- NB = NBVAL( INB )
- CALL XLAENV( 1, NB )
- CALL XLAENV( 3, NXVAL( INB ) )
- *
- * Test DGELSY
- *
- * DGELSY: Compute the minimum-norm solution X
- * to min( norm( A * X - B ) )
- * using the rank-revealing orthogonal
- * factorization.
- *
- * Initialize vector IWORK.
- *
- DO 70 J = 1, N
- IWORK( J ) = 0
- 70 CONTINUE
- *
- * Set LWLSY to the adequate value.
- *
- LWLSY = MAX( 1, MNMIN+2*N+NB*( N+1 ),
- $ 2*MNMIN+NB*NRHS )
- *
- CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
- CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
- $ LDB )
- *
- SRNAMT = 'DGELSY'
- CALL DGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
- $ RCOND, CRANK, WORK, LWLSY, INFO )
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DGELSY', INFO, 0, ' ', M,
- $ N, NRHS, -1, NB, ITYPE, NFAIL,
- $ NERRS, NOUT )
- *
- * Test 3: Compute relative error in svd
- * workspace: M*N + 4*MIN(M,N) + MAX(M,N)
- *
- RESULT( 3 ) = DQRT12( CRANK, CRANK, A, LDA,
- $ COPYS, WORK, LWORK )
- *
- * Test 4: Compute error in solution
- * workspace: M*NRHS + M
- *
- CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
- $ LDWORK )
- CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
- $ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 4 ) )
- *
- * Test 5: Check norm of r'*A
- * workspace: NRHS*(M+N)
- *
- RESULT( 5 ) = ZERO
- IF( M.GT.CRANK )
- $ RESULT( 5 ) = DQRT17( 'No transpose', 1, M,
- $ N, NRHS, COPYA, LDA, B, LDB,
- $ COPYB, LDB, C, WORK, LWORK )
- *
- * Test 6: Check if x is in the rowspace of A
- * workspace: (M+NRHS)*(N+2)
- *
- RESULT( 6 ) = ZERO
- *
- IF( N.GT.CRANK )
- $ RESULT( 6 ) = DQRT14( 'No transpose', M, N,
- $ NRHS, COPYA, LDA, B, LDB,
- $ WORK, LWORK )
- *
- * Test DGELSS
- *
- * DGELSS: Compute the minimum-norm solution X
- * to min( norm( A * X - B ) )
- * using the SVD.
- *
- CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
- CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
- $ LDB )
- SRNAMT = 'DGELSS'
- CALL DGELSS( M, N, NRHS, A, LDA, B, LDB, S,
- $ RCOND, CRANK, WORK, LWORK, INFO )
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DGELSS', INFO, 0, ' ', M,
- $ N, NRHS, -1, NB, ITYPE, NFAIL,
- $ NERRS, NOUT )
- *
- * workspace used: 3*min(m,n) +
- * max(2*min(m,n),nrhs,max(m,n))
- *
- * Test 7: Compute relative error in svd
- *
- IF( RANK.GT.0 ) THEN
- CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 7 ) = DASUM( MNMIN, S, 1 ) /
- $ DASUM( MNMIN, COPYS, 1 ) /
- $ ( EPS*DBLE( MNMIN ) )
- ELSE
- RESULT( 7 ) = ZERO
- END IF
- *
- * Test 8: Compute error in solution
- *
- CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
- $ LDWORK )
- CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
- $ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 8 ) )
- *
- * Test 9: Check norm of r'*A
- *
- RESULT( 9 ) = ZERO
- IF( M.GT.CRANK )
- $ RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
- $ N, NRHS, COPYA, LDA, B, LDB,
- $ COPYB, LDB, C, WORK, LWORK )
- *
- * Test 10: Check if x is in the rowspace of A
- *
- RESULT( 10 ) = ZERO
- IF( N.GT.CRANK )
- $ RESULT( 10 ) = DQRT14( 'No transpose', M, N,
- $ NRHS, COPYA, LDA, B, LDB,
- $ WORK, LWORK )
- *
- * Test DGELSD
- *
- * DGELSD: Compute the minimum-norm solution X
- * to min( norm( A * X - B ) ) using a
- * divide and conquer SVD.
- *
- * Initialize vector IWORK.
- *
- DO 80 J = 1, N
- IWORK( J ) = 0
- 80 CONTINUE
- *
- CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
- CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
- $ LDB )
- *
- SRNAMT = 'DGELSD'
- CALL DGELSD( M, N, NRHS, A, LDA, B, LDB, S,
- $ RCOND, CRANK, WORK, LWORK, IWORK,
- $ INFO )
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DGELSD', INFO, 0, ' ', M,
- $ N, NRHS, -1, NB, ITYPE, NFAIL,
- $ NERRS, NOUT )
- *
- * Test 11: Compute relative error in svd
- *
- IF( RANK.GT.0 ) THEN
- CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
- RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
- $ DASUM( MNMIN, COPYS, 1 ) /
- $ ( EPS*DBLE( MNMIN ) )
- ELSE
- RESULT( 11 ) = ZERO
- END IF
- *
- * Test 12: Compute error in solution
- *
- CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
- $ LDWORK )
- CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
- $ LDA, B, LDB, WORK, LDWORK,
- $ WORK( M*NRHS+1 ), RESULT( 12 ) )
- *
- * Test 13: Check norm of r'*A
- *
- RESULT( 13 ) = ZERO
- IF( M.GT.CRANK )
- $ RESULT( 13 ) = DQRT17( 'No transpose', 1, M,
- $ N, NRHS, COPYA, LDA, B, LDB,
- $ COPYB, LDB, C, WORK, LWORK )
- *
- * Test 14: Check if x is in the rowspace of A
- *
- RESULT( 14 ) = ZERO
- IF( N.GT.CRANK )
- $ RESULT( 14 ) = DQRT14( 'No transpose', M, N,
- $ NRHS, COPYA, LDA, B, LDB,
- $ WORK, LWORK )
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 90 K = 3, NTESTS
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
- $ ITYPE, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 90 CONTINUE
- NRUN = NRUN + 12
- *
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- 150 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
- $ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
- 9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
- $ ', type', I2, ', test(', I2, ')=', G12.5 )
- RETURN
- *
- * End of DDRVLS
- *
- END
|