|
- *> \brief \b SDRVPO
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
- * RWORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NMAX, NN, NOUT, NRHS
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NVAL( * )
- * REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
- * $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
- * $ X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SDRVPO tests the driver routines SPOSV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand side vectors to be generated for
- *> each linear system.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[in] NMAX
- *> \verbatim
- *> NMAX is INTEGER
- *> The maximum value permitted for N, used in dimensioning the
- *> work arrays.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is REAL array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is REAL array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] BSAV
- *> \verbatim
- *> BSAV is REAL array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is REAL array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is REAL array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension
- *> (NMAX*max(3,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (NMAX+2*NRHS)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
- $ RWORK, IWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NMAX, NN, NOUT, NRHS
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NVAL( * )
- REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
- $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
- $ X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 9 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 6 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
- CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE
- CHARACTER*3 PATH
- INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
- $ IZERO, K, K1, KL, KU, LDA, MODE, N, NB, NBMIN,
- $ NERRS, NFACT, NFAIL, NIMAT, NRUN, NT
- REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
- $ ROLDC, SCOND
- * ..
- * .. Local Arrays ..
- CHARACTER EQUEDS( 2 ), FACTS( 3 ), UPLOS( 2 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RESULT( NTESTS )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SGET06, SLANSY
- EXTERNAL LSAME, SGET06, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, SERRVX, SGET04, SLACPY,
- $ SLAQSY, SLARHS, SLASET, SLATB4, SLATMS, SPOEQU,
- $ SPOSV, SPOSVX, SPOT01, SPOT02, SPOT05, SPOTRF,
- $ SPOTRI, XLAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA UPLOS / 'U', 'L' /
- DATA FACTS / 'F', 'N', 'E' /
- DATA EQUEDS / 'N', 'Y' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Single precision'
- PATH( 2: 3 ) = 'PO'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL SERRVX( PATH, NOUT )
- INFOT = 0
- *
- * Set the block size and minimum block size for testing.
- *
- NB = 1
- NBMIN = 2
- CALL XLAENV( 1, NB )
- CALL XLAENV( 2, NBMIN )
- *
- * Do for each value of N in NVAL
- *
- DO 130 IN = 1, NN
- N = NVAL( IN )
- LDA = MAX( N, 1 )
- XTYPE = 'N'
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 120 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 120
- *
- * Skip types 3, 4, or 5 if the matrix size is too small.
- *
- ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
- IF( ZEROT .AND. N.LT.IMAT-2 )
- $ GO TO 120
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- DO 110 IUPLO = 1, 2
- UPLO = UPLOS( IUPLO )
- *
- * Set up parameters with SLATB4 and generate a test matrix
- * with SLATMS.
- *
- CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ CNDNUM, DIST )
- *
- SRNAMT = 'SLATMS'
- CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
- $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
- $ INFO )
- *
- * Check error code from SLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'SLATMS', INFO, 0, UPLO, N, N, -1,
- $ -1, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 110
- END IF
- *
- * For types 3-5, zero one row and column of the matrix to
- * test that INFO is returned correctly.
- *
- IF( ZEROT ) THEN
- IF( IMAT.EQ.3 ) THEN
- IZERO = 1
- ELSE IF( IMAT.EQ.4 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- IOFF = ( IZERO-1 )*LDA
- *
- * Set row and column IZERO of A to 0.
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 20 I = 1, IZERO - 1
- A( IOFF+I ) = ZERO
- 20 CONTINUE
- IOFF = IOFF + IZERO
- DO 30 I = IZERO, N
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 30 CONTINUE
- ELSE
- IOFF = IZERO
- DO 40 I = 1, IZERO - 1
- A( IOFF ) = ZERO
- IOFF = IOFF + LDA
- 40 CONTINUE
- IOFF = IOFF - IZERO
- DO 50 I = IZERO, N
- A( IOFF+I ) = ZERO
- 50 CONTINUE
- END IF
- ELSE
- IZERO = 0
- END IF
- *
- * Save a copy of the matrix A in ASAV.
- *
- CALL SLACPY( UPLO, N, N, A, LDA, ASAV, LDA )
- *
- DO 100 IEQUED = 1, 2
- EQUED = EQUEDS( IEQUED )
- IF( IEQUED.EQ.1 ) THEN
- NFACT = 3
- ELSE
- NFACT = 1
- END IF
- *
- DO 90 IFACT = 1, NFACT
- FACT = FACTS( IFACT )
- PREFAC = LSAME( FACT, 'F' )
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- *
- IF( ZEROT ) THEN
- IF( PREFAC )
- $ GO TO 90
- RCONDC = ZERO
- *
- ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN
- *
- * Compute the condition number for comparison with
- * the value returned by SPOSVX (FACT = 'N' reuses
- * the condition number from the previous iteration
- * with FACT = 'F').
- *
- CALL SLACPY( UPLO, N, N, ASAV, LDA, AFAC, LDA )
- IF( EQUIL .OR. IEQUED.GT.1 ) THEN
- *
- * Compute row and column scale factors to
- * equilibrate the matrix A.
- *
- CALL SPOEQU( N, AFAC, LDA, S, SCOND, AMAX,
- $ INFO )
- IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
- IF( IEQUED.GT.1 )
- $ SCOND = ZERO
- *
- * Equilibrate the matrix.
- *
- CALL SLAQSY( UPLO, N, AFAC, LDA, S, SCOND,
- $ AMAX, EQUED )
- END IF
- END IF
- *
- * Save the condition number of the
- * non-equilibrated system for use in SGET04.
- *
- IF( EQUIL )
- $ ROLDC = RCONDC
- *
- * Compute the 1-norm of A.
- *
- ANORM = SLANSY( '1', UPLO, N, AFAC, LDA, RWORK )
- *
- * Factor the matrix A.
- *
- CALL SPOTRF( UPLO, N, AFAC, LDA, INFO )
- *
- * Form the inverse of A.
- *
- CALL SLACPY( UPLO, N, N, AFAC, LDA, A, LDA )
- CALL SPOTRI( UPLO, N, A, LDA, INFO )
- *
- * Compute the 1-norm condition number of A.
- *
- AINVNM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDC = ONE
- ELSE
- RCONDC = ( ONE / ANORM ) / AINVNM
- END IF
- END IF
- *
- * Restore the matrix A.
- *
- CALL SLACPY( UPLO, N, N, ASAV, LDA, A, LDA )
- *
- * Form an exact solution and set the right hand side.
- *
- SRNAMT = 'SLARHS'
- CALL SLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
- $ NRHS, A, LDA, XACT, LDA, B, LDA,
- $ ISEED, INFO )
- XTYPE = 'C'
- CALL SLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
- *
- IF( NOFACT ) THEN
- *
- * --- Test SPOSV ---
- *
- * Compute the L*L' or U'*U factorization of the
- * matrix and solve the system.
- *
- CALL SLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
- CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- SRNAMT = 'SPOSV '
- CALL SPOSV( UPLO, N, NRHS, AFAC, LDA, X, LDA,
- $ INFO )
- *
- * Check error code from SPOSV .
- *
- IF( INFO.NE.IZERO ) THEN
- CALL ALAERH( PATH, 'SPOSV ', INFO, IZERO,
- $ UPLO, N, N, -1, -1, NRHS, IMAT,
- $ NFAIL, NERRS, NOUT )
- GO TO 70
- ELSE IF( INFO.NE.0 ) THEN
- GO TO 70
- END IF
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL SPOT01( UPLO, N, A, LDA, AFAC, LDA, RWORK,
- $ RESULT( 1 ) )
- *
- * Compute residual of the computed solution.
- *
- CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK,
- $ LDA )
- CALL SPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
- $ WORK, LDA, RWORK, RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- NT = 3
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 60 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'SPOSV ', UPLO,
- $ N, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 60 CONTINUE
- NRUN = NRUN + NT
- 70 CONTINUE
- END IF
- *
- * --- Test SPOSVX ---
- *
- IF( .NOT.PREFAC )
- $ CALL SLASET( UPLO, N, N, ZERO, ZERO, AFAC, LDA )
- CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
- IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
- *
- * Equilibrate the matrix if FACT='F' and
- * EQUED='Y'.
- *
- CALL SLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX,
- $ EQUED )
- END IF
- *
- * Solve the system and compute the condition number
- * and error bounds using SPOSVX.
- *
- SRNAMT = 'SPOSVX'
- CALL SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AFAC,
- $ LDA, EQUED, S, B, LDA, X, LDA, RCOND,
- $ RWORK, RWORK( NRHS+1 ), WORK, IWORK,
- $ INFO )
- *
- * Check the error code from SPOSVX.
- *
- IF( INFO.NE.IZERO ) THEN
- CALL ALAERH( PATH, 'SPOSVX', INFO, IZERO,
- $ FACT // UPLO, N, N, -1, -1, NRHS,
- $ IMAT, NFAIL, NERRS, NOUT )
- GO TO 90
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( .NOT.PREFAC ) THEN
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL SPOT01( UPLO, N, A, LDA, AFAC, LDA,
- $ RWORK( 2*NRHS+1 ), RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- * Compute residual of the computed solution.
- *
- CALL SLACPY( 'Full', N, NRHS, BSAV, LDA, WORK,
- $ LDA )
- CALL SPOT02( UPLO, N, NRHS, ASAV, LDA, X, LDA,
- $ WORK, LDA, RWORK( 2*NRHS+1 ),
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
- $ 'N' ) ) ) THEN
- CALL SGET04( N, NRHS, X, LDA, XACT, LDA,
- $ RCONDC, RESULT( 3 ) )
- ELSE
- CALL SGET04( N, NRHS, X, LDA, XACT, LDA,
- $ ROLDC, RESULT( 3 ) )
- END IF
- *
- * Check the error bounds from iterative
- * refinement.
- *
- CALL SPOT05( UPLO, N, NRHS, ASAV, LDA, B, LDA,
- $ X, LDA, XACT, LDA, RWORK,
- $ RWORK( NRHS+1 ), RESULT( 4 ) )
- ELSE
- K1 = 6
- END IF
- *
- * Compare RCOND from SPOSVX with the computed value
- * in RCONDC.
- *
- RESULT( 6 ) = SGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 80 K = K1, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9997 )'SPOSVX', FACT,
- $ UPLO, N, EQUED, IMAT, K, RESULT( K )
- ELSE
- WRITE( NOUT, FMT = 9998 )'SPOSVX', FACT,
- $ UPLO, N, IMAT, K, RESULT( K )
- END IF
- NFAIL = NFAIL + 1
- END IF
- 80 CONTINUE
- NRUN = NRUN + 7 - K1
- 90 CONTINUE
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
- $ ', test(', I1, ')=', G12.5 )
- 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5,
- $ ', type ', I1, ', test(', I1, ')=', G12.5 )
- 9997 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5,
- $ ', EQUED=''', A1, ''', type ', I1, ', test(', I1, ') =',
- $ G12.5 )
- RETURN
- *
- * End of SDRVPO
- *
- END
|