|
- *> \brief \b DQRT12
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION DQRT12( M, N, A, LDA, S, WORK, LWORK )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), S( * ), WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DQRT12 computes the singular values `svlues' of the upper trapezoid
- *> of A(1:M,1:N) and returns the ratio
- *>
- *> || svlues - s ||/(||s||*eps*max(M,N))
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The M-by-N matrix A. Only the upper trapezoid is referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (min(M,N))
- *> The singular values of the matrix A.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK >= max(M*N + 4*min(M,N) +
- *> max(M,N), M*N+2*MIN( M, N )+4*N).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION DQRT12( M, N, A, LDA, S, WORK, LWORK )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), S( * ), WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, ISCL, J, MN
- DOUBLE PRECISION ANRM, BIGNUM, NRMSVL, SMLNUM
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DASUM, DLAMCH, DLANGE, DNRM2
- EXTERNAL DASUM, DLAMCH, DLANGE, DNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL DAXPY, DBDSQR, DGEBD2, DLASCL, DLASET, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION DUMMY( 1 )
- * ..
- * .. Executable Statements ..
- *
- DQRT12 = ZERO
- *
- * Test that enough workspace is supplied
- *
- IF( LWORK.LT.MAX( M*N+4*MIN( M, N )+MAX( M, N ),
- $ M*N+2*MIN( M, N )+4*N) ) THEN
- CALL XERBLA( 'DQRT12', 7 )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- MN = MIN( M, N )
- IF( MN.LE.ZERO )
- $ RETURN
- *
- NRMSVL = DNRM2( MN, S, 1 )
- *
- * Copy upper triangle of A into work
- *
- CALL DLASET( 'Full', M, N, ZERO, ZERO, WORK, M )
- DO J = 1, N
- DO I = 1, MIN( J, M )
- WORK( ( J-1 )*M+I ) = A( I, J )
- END DO
- END DO
- *
- * Get machine parameters
- *
- SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- *
- * Scale work if max entry outside range [SMLNUM,BIGNUM]
- *
- ANRM = DLANGE( 'M', M, N, WORK, M, DUMMY )
- ISCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
- ISCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
- ISCL = 1
- END IF
- *
- IF( ANRM.NE.ZERO ) THEN
- *
- * Compute SVD of work
- *
- CALL DGEBD2( M, N, WORK, M, WORK( M*N+1 ), WORK( M*N+MN+1 ),
- $ WORK( M*N+2*MN+1 ), WORK( M*N+3*MN+1 ),
- $ WORK( M*N+4*MN+1 ), INFO )
- CALL DBDSQR( 'Upper', MN, 0, 0, 0, WORK( M*N+1 ),
- $ WORK( M*N+MN+1 ), DUMMY, MN, DUMMY, 1, DUMMY, MN,
- $ WORK( M*N+2*MN+1 ), INFO )
- *
- IF( ISCL.EQ.1 ) THEN
- IF( ANRM.GT.BIGNUM ) THEN
- CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1,
- $ WORK( M*N+1 ), MN, INFO )
- END IF
- IF( ANRM.LT.SMLNUM ) THEN
- CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1,
- $ WORK( M*N+1 ), MN, INFO )
- END IF
- END IF
- *
- ELSE
- *
- DO I = 1, MN
- WORK( M*N+I ) = ZERO
- END DO
- END IF
- *
- * Compare s and singular values of work
- *
- CALL DAXPY( MN, -ONE, S, 1, WORK( M*N+1 ), 1 )
- *
- DQRT12 = DASUM( MN, WORK( M*N+1 ), 1 ) /
- $ ( DLAMCH('Epsilon') * DBLE( MAX( M, N ) ) )
- *
- IF( NRMSVL.NE.ZERO )
- $ DQRT12 = DQRT12 / NRMSVL
- *
- RETURN
- *
- * End of DQRT12
- *
- END
|