|
- C> \brief \b SGETRF VARIANT: Crout Level 3 BLAS version of the algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGETRF ( M, N, A, LDA, IPIV, INFO)
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL A( LDA, * )
- * ..
- *
- * Purpose
- * =======
- *
- C>\details \b Purpose:
- C>\verbatim
- C>
- C> SGETRF computes an LU factorization of a general M-by-N matrix A
- C> using partial pivoting with row interchanges.
- C>
- C> The factorization has the form
- C> A = P * L * U
- C> where P is a permutation matrix, L is lower triangular with unit
- C> diagonal elements (lower trapezoidal if m > n), and U is upper
- C> triangular (upper trapezoidal if m < n).
- C>
- C> This is the Crout Level 3 BLAS version of the algorithm.
- C>
- C>\endverbatim
- *
- * Arguments:
- * ==========
- *
- C> \param[in] M
- C> \verbatim
- C> M is INTEGER
- C> The number of rows of the matrix A. M >= 0.
- C> \endverbatim
- C>
- C> \param[in] N
- C> \verbatim
- C> N is INTEGER
- C> The number of columns of the matrix A. N >= 0.
- C> \endverbatim
- C>
- C> \param[in,out] A
- C> \verbatim
- C> A is REAL array, dimension (LDA,N)
- C> On entry, the M-by-N matrix to be factored.
- C> On exit, the factors L and U from the factorization
- C> A = P*L*U; the unit diagonal elements of L are not stored.
- C> \endverbatim
- C>
- C> \param[in] LDA
- C> \verbatim
- C> LDA is INTEGER
- C> The leading dimension of the array A. LDA >= max(1,M).
- C> \endverbatim
- C>
- C> \param[out] IPIV
- C> \verbatim
- C> IPIV is INTEGER array, dimension (min(M,N))
- C> The pivot indices; for 1 <= i <= min(M,N), row i of the
- C> matrix was interchanged with row IPIV(i).
- C> \endverbatim
- C>
- C> \param[out] INFO
- C> \verbatim
- C> INFO is INTEGER
- C> = 0: successful exit
- C> < 0: if INFO = -i, the i-th argument had an illegal value
- C> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- C> has been completed, but the factor U is exactly
- C> singular, and division by zero will occur if it is used
- C> to solve a system of equations.
- C> \endverbatim
- C>
- *
- * Authors:
- * ========
- *
- C> \author Univ. of Tennessee
- C> \author Univ. of California Berkeley
- C> \author Univ. of Colorado Denver
- C> \author NAG Ltd.
- *
- C> \date December 2016
- *
- C> \ingroup variantsGEcomputational
- *
- * =====================================================================
- SUBROUTINE SGETRF ( M, N, A, LDA, IPIV, INFO)
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IINFO, J, JB, NB
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SGETF2, SLASWP, STRSM, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGETRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'SGETRF', ' ', M, N, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
- *
- * Use unblocked code.
- *
- CALL SGETF2( M, N, A, LDA, IPIV, INFO )
- ELSE
- *
- * Use blocked code.
- *
- DO 20 J = 1, MIN( M, N ), NB
- JB = MIN( MIN( M, N )-J+1, NB )
- *
- * Update current block.
- *
- CALL SGEMM( 'No transpose', 'No transpose',
- $ M-J+1, JB, J-1, -ONE,
- $ A( J, 1 ), LDA, A( 1, J ), LDA, ONE,
- $ A( J, J ), LDA )
-
- *
- * Factor diagonal and subdiagonal blocks and test for exact
- * singularity.
- *
- CALL SGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
- *
- * Adjust INFO and the pivot indices.
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + J - 1
- DO 10 I = J, MIN( M, J+JB-1 )
- IPIV( I ) = J - 1 + IPIV( I )
- 10 CONTINUE
- *
- * Apply interchanges to column 1:J-1
- *
- CALL SLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
- *
- IF ( J+JB.LE.N ) THEN
- *
- * Apply interchanges to column J+JB:N
- *
- CALL SLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
- $ IPIV, 1 )
- *
- CALL SGEMM( 'No transpose', 'No transpose',
- $ JB, N-J-JB+1, J-1, -ONE,
- $ A( J, 1 ), LDA, A( 1, J+JB ), LDA, ONE,
- $ A( J, J+JB ), LDA )
- *
- * Compute block row of U.
- *
- CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit',
- $ JB, N-J-JB+1, ONE, A( J, J ), LDA,
- $ A( J, J+JB ), LDA )
- END IF
-
- 20 CONTINUE
-
- END IF
- RETURN
- *
- * End of SGETRF
- *
- END
|