|
- *> \brief \b ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLAEV2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaev2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaev2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaev2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
- *
- * .. Scalar Arguments ..
- * DOUBLE PRECISION CS1, RT1, RT2
- * COMPLEX*16 A, B, C, SN1
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
- *> [ A B ]
- *> [ CONJG(B) C ].
- *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
- *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
- *> eigenvector for RT1, giving the decomposition
- *>
- *> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
- *> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16
- *> The (1,1) element of the 2-by-2 matrix.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16
- *> The (1,2) element and the conjugate of the (2,1) element of
- *> the 2-by-2 matrix.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is COMPLEX*16
- *> The (2,2) element of the 2-by-2 matrix.
- *> \endverbatim
- *>
- *> \param[out] RT1
- *> \verbatim
- *> RT1 is DOUBLE PRECISION
- *> The eigenvalue of larger absolute value.
- *> \endverbatim
- *>
- *> \param[out] RT2
- *> \verbatim
- *> RT2 is DOUBLE PRECISION
- *> The eigenvalue of smaller absolute value.
- *> \endverbatim
- *>
- *> \param[out] CS1
- *> \verbatim
- *> CS1 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[out] SN1
- *> \verbatim
- *> SN1 is COMPLEX*16
- *> The vector (CS1, SN1) is a unit right eigenvector for RT1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> RT1 is accurate to a few ulps barring over/underflow.
- *>
- *> RT2 may be inaccurate if there is massive cancellation in the
- *> determinant A*C-B*B; higher precision or correctly rounded or
- *> correctly truncated arithmetic would be needed to compute RT2
- *> accurately in all cases.
- *>
- *> CS1 and SN1 are accurate to a few ulps barring over/underflow.
- *>
- *> Overflow is possible only if RT1 is within a factor of 5 of overflow.
- *> Underflow is harmless if the input data is 0 or exceeds
- *> underflow_threshold / macheps.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- DOUBLE PRECISION CS1, RT1, RT2
- COMPLEX*16 A, B, C, SN1
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D0 )
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION T
- COMPLEX*16 W
- * ..
- * .. External Subroutines ..
- EXTERNAL DLAEV2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCONJG
- * ..
- * .. Executable Statements ..
- *
- IF( ABS( B ).EQ.ZERO ) THEN
- W = ONE
- ELSE
- W = DCONJG( B ) / ABS( B )
- END IF
- CALL DLAEV2( DBLE( A ), ABS( B ), DBLE( C ), RT1, RT2, CS1, T )
- SN1 = W*T
- RETURN
- *
- * End of ZLAEV2
- *
- END
|