|
- *> \brief \b ZGELQS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGELQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), TAU( * ),
- * $ WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Compute a minimum-norm solution
- *> min || A*X - B ||
- *> using the LQ factorization
- *> A = L*Q
- *> computed by ZGELQF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= M >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> Details of the LQ factorization of the original matrix A as
- *> returned by ZGELQF.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= M.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (M)
- *> Details of the orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> On entry, the m-by-nrhs right hand side matrix B.
- *> On exit, the n-by-nrhs solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK must be at least NRHS,
- *> and should be at least NRHS*NB, where NB is the block size
- *> for this environment.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZGELQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), B( LDB, * ), TAU( * ),
- $ WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZLASET, ZTRSM, ZUNMLQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 .OR. M.GT.N ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
- $ THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGELQS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
- $ RETURN
- *
- * Solve L*X = B(1:m,:)
- *
- CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Non-unit', M, NRHS,
- $ CONE, A, LDA, B, LDB )
- *
- * Set B(m+1:n,:) to zero
- *
- IF( M.LT.N )
- $ CALL ZLASET( 'Full', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ),
- $ LDB )
- *
- * B := Q' * B
- *
- CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A, LDA,
- $ TAU, B, LDB, WORK, LWORK, INFO )
- *
- RETURN
- *
- * End of ZGELQS
- *
- END
|