|
- *> \brief \b DLAQP2RK computes truncated QR factorization with column pivoting of a real matrix block using Level 2 BLAS and overwrites a real m-by-nrhs matrix B with Q**T * B.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAQP2RK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqp2rk.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqp2rk.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqp2rk.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAQP2RK( M, N, NRHS, IOFFSET, KMAX, ABSTOL, RELTOL,
- * $ KP1, MAXC2NRM, A, LDA, K, MAXC2NRMK,
- * $ RELMAXC2NRMK, JPIV, TAU, VN1, VN2, WORK,
- * $ INFO )
- * IMPLICIT NONE
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, IOFFSET, KP1, K, KMAX, LDA, M, N, NRHS
- * DOUBLE PRECISION ABSTOL, MAXC2NRM, MAXC2NRMK, RELMAXC2NRMK,
- * $ RELTOL
- * ..
- * .. Array Arguments ..
- * INTEGER JPIV( * )
- * DOUBLE PRECISION A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAQP2RK computes a truncated (rank K) or full rank Householder QR
- *> factorization with column pivoting of a real matrix
- *> block A(IOFFSET+1:M,1:N) as
- *>
- *> A * P(K) = Q(K) * R(K).
- *>
- *> The routine uses Level 2 BLAS. The block A(1:IOFFSET,1:N)
- *> is accordingly pivoted, but not factorized.
- *>
- *> The routine also overwrites the right-hand-sides matrix block B
- *> stored in A(IOFFSET+1:M,N+1:N+NRHS) with Q(K)**T * B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of
- *> columns of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] IOFFSET
- *> \verbatim
- *> IOFFSET is INTEGER
- *> The number of rows of the matrix A that must be pivoted
- *> but not factorized. IOFFSET >= 0.
- *>
- *> IOFFSET also represents the number of columns of the whole
- *> original matrix A_orig that have been factorized
- *> in the previous steps.
- *> \endverbatim
- *>
- *> \param[in] KMAX
- *> \verbatim
- *> KMAX is INTEGER
- *>
- *> The first factorization stopping criterion. KMAX >= 0.
- *>
- *> The maximum number of columns of the matrix A to factorize,
- *> i.e. the maximum factorization rank.
- *>
- *> a) If KMAX >= min(M-IOFFSET,N), then this stopping
- *> criterion is not used, factorize columns
- *> depending on ABSTOL and RELTOL.
- *>
- *> b) If KMAX = 0, then this stopping criterion is
- *> satisfied on input and the routine exits immediately.
- *> This means that the factorization is not performed,
- *> the matrices A and B and the arrays TAU, IPIV
- *> are not modified.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is DOUBLE PRECISION, cannot be NaN.
- *>
- *> The second factorization stopping criterion.
- *>
- *> The absolute tolerance (stopping threshold) for
- *> maximum column 2-norm of the residual matrix.
- *> The algorithm converges (stops the factorization) when
- *> the maximum column 2-norm of the residual matrix
- *> is less than or equal to ABSTOL.
- *>
- *> a) If ABSTOL < 0.0, then this stopping criterion is not
- *> used, the routine factorizes columns depending
- *> on KMAX and RELTOL.
- *> This includes the case ABSTOL = -Inf.
- *>
- *> b) If 0.0 <= ABSTOL then the input value
- *> of ABSTOL is used.
- *> \endverbatim
- *>
- *> \param[in] RELTOL
- *> \verbatim
- *> RELTOL is DOUBLE PRECISION, cannot be NaN.
- *>
- *> The third factorization stopping criterion.
- *>
- *> The tolerance (stopping threshold) for the ratio of the
- *> maximum column 2-norm of the residual matrix to the maximum
- *> column 2-norm of the original matrix A_orig. The algorithm
- *> converges (stops the factorization), when this ratio is
- *> less than or equal to RELTOL.
- *>
- *> a) If RELTOL < 0.0, then this stopping criterion is not
- *> used, the routine factorizes columns depending
- *> on KMAX and ABSTOL.
- *> This includes the case RELTOL = -Inf.
- *>
- *> d) If 0.0 <= RELTOL then the input value of RELTOL
- *> is used.
- *> \endverbatim
- *>
- *> \param[in] KP1
- *> \verbatim
- *> KP1 is INTEGER
- *> The index of the column with the maximum 2-norm in
- *> the whole original matrix A_orig determined in the
- *> main routine DGEQP3RK. 1 <= KP1 <= N_orig_mat.
- *> \endverbatim
- *>
- *> \param[in] MAXC2NRM
- *> \verbatim
- *> MAXC2NRM is DOUBLE PRECISION
- *> The maximum column 2-norm of the whole original
- *> matrix A_orig computed in the main routine DGEQP3RK.
- *> MAXC2NRM >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N+NRHS)
- *> On entry:
- *> the M-by-N matrix A and M-by-NRHS matrix B, as in
- *>
- *> N NRHS
- *> array_A = M [ mat_A, mat_B ]
- *>
- *> On exit:
- *> 1. The elements in block A(IOFFSET+1:M,1:K) below
- *> the diagonal together with the array TAU represent
- *> the orthogonal matrix Q(K) as a product of elementary
- *> reflectors.
- *> 2. The upper triangular block of the matrix A stored
- *> in A(IOFFSET+1:M,1:K) is the triangular factor obtained.
- *> 3. The block of the matrix A stored in A(1:IOFFSET,1:N)
- *> has been accordingly pivoted, but not factorized.
- *> 4. The rest of the array A, block A(IOFFSET+1:M,K+1:N+NRHS).
- *> The left part A(IOFFSET+1:M,K+1:N) of this block
- *> contains the residual of the matrix A, and,
- *> if NRHS > 0, the right part of the block
- *> A(IOFFSET+1:M,N+1:N+NRHS) contains the block of
- *> the right-hand-side matrix B. Both these blocks have been
- *> updated by multiplication from the left by Q(K)**T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> Factorization rank of the matrix A, i.e. the rank of
- *> the factor R, which is the same as the number of non-zero
- *> rows of the factor R. 0 <= K <= min(M-IOFFSET,KMAX,N).
- *>
- *> K also represents the number of non-zero Householder
- *> vectors.
- *> \endverbatim
- *>
- *> \param[out] MAXC2NRMK
- *> \verbatim
- *> MAXC2NRMK is DOUBLE PRECISION
- *> The maximum column 2-norm of the residual matrix,
- *> when the factorization stopped at rank K. MAXC2NRMK >= 0.
- *> \endverbatim
- *>
- *> \param[out] RELMAXC2NRMK
- *> \verbatim
- *> RELMAXC2NRMK is DOUBLE PRECISION
- *> The ratio MAXC2NRMK / MAXC2NRM of the maximum column
- *> 2-norm of the residual matrix (when the factorization
- *> stopped at rank K) to the maximum column 2-norm of the
- *> whole original matrix A. RELMAXC2NRMK >= 0.
- *> \endverbatim
- *>
- *> \param[out] JPIV
- *> \verbatim
- *> JPIV is INTEGER array, dimension (N)
- *> Column pivot indices, for 1 <= j <= N, column j
- *> of the matrix A was interchanged with column JPIV(j).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (min(M-IOFFSET,N))
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in,out] VN1
- *> \verbatim
- *> VN1 is DOUBLE PRECISION array, dimension (N)
- *> The vector with the partial column norms.
- *> \endverbatim
- *>
- *> \param[in,out] VN2
- *> \verbatim
- *> VN2 is DOUBLE PRECISION array, dimension (N)
- *> The vector with the exact column norms.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (N-1)
- *> Used in DLARF subroutine to apply an elementary
- *> reflector from the left.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> 1) INFO = 0: successful exit.
- *> 2) If INFO = j_1, where 1 <= j_1 <= N, then NaN was
- *> detected and the routine stops the computation.
- *> The j_1-th column of the matrix A or the j_1-th
- *> element of array TAU contains the first occurrence
- *> of NaN in the factorization step K+1 ( when K columns
- *> have been factorized ).
- *>
- *> On exit:
- *> K is set to the number of
- *> factorized columns without
- *> exception.
- *> MAXC2NRMK is set to NaN.
- *> RELMAXC2NRMK is set to NaN.
- *> TAU(K+1:min(M,N)) is not set and contains undefined
- *> elements. If j_1=K+1, TAU(K+1)
- *> may contain NaN.
- *> 3) If INFO = j_2, where N+1 <= j_2 <= 2*N, then no NaN
- *> was detected, but +Inf (or -Inf) was detected and
- *> the routine continues the computation until completion.
- *> The (j_2-N)-th column of the matrix A contains the first
- *> occurrence of +Inf (or -Inf) in the factorization
- *> step K+1 ( when K columns have been factorized ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup laqp2rk
- *
- *> \par References:
- * ================
- *> [1] A Level 3 BLAS QR factorization algorithm with column pivoting developed in 1996.
- *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain.
- *> X. Sun, Computer Science Dept., Duke University, USA.
- *> C. H. Bischof, Math. and Comp. Sci. Div., Argonne National Lab, USA.
- *> A BLAS-3 version of the QR factorization with column pivoting.
- *> LAPACK Working Note 114
- *> \htmlonly
- *> <a href="https://www.netlib.org/lapack/lawnspdf/lawn114.pdf">https://www.netlib.org/lapack/lawnspdf/lawn114.pdf</a>
- *> \endhtmlonly
- *> and in
- *> SIAM J. Sci. Comput., 19(5):1486-1494, Sept. 1998.
- *> \htmlonly
- *> <a href="https://doi.org/10.1137/S1064827595296732">https://doi.org/10.1137/S1064827595296732</a>
- *> \endhtmlonly
- *>
- *> [2] A partial column norm updating strategy developed in 2006.
- *> Z. Drmac and Z. Bujanovic, Dept. of Math., University of Zagreb, Croatia.
- *> On the failure of rank revealing QR factorization software – a case study.
- *> LAPACK Working Note 176.
- *> \htmlonly
- *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">http://www.netlib.org/lapack/lawnspdf/lawn176.pdf</a>
- *> \endhtmlonly
- *> and in
- *> ACM Trans. Math. Softw. 35, 2, Article 12 (July 2008), 28 pages.
- *> \htmlonly
- *> <a href="https://doi.org/10.1145/1377612.1377616">https://doi.org/10.1145/1377612.1377616</a>
- *> \endhtmlonly
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> November 2023, Igor Kozachenko, James Demmel,
- *> EECS Department,
- *> University of California, Berkeley, USA.
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE DLAQP2RK( M, N, NRHS, IOFFSET, KMAX, ABSTOL, RELTOL,
- $ KP1, MAXC2NRM, A, LDA, K, MAXC2NRMK,
- $ RELMAXC2NRMK, JPIV, TAU, VN1, VN2, WORK,
- $ INFO )
- IMPLICIT NONE
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, IOFFSET, KP1, K, KMAX, LDA, M, N, NRHS
- DOUBLE PRECISION ABSTOL, MAXC2NRM, MAXC2NRMK, RELMAXC2NRMK,
- $ RELTOL
- * ..
- * .. Array Arguments ..
- INTEGER JPIV( * )
- DOUBLE PRECISION A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, ITEMP, J, JMAXC2NRM, KK, KP, MINMNFACT,
- $ MINMNUPDT
- DOUBLE PRECISION AIKK, HUGEVAL, TEMP, TEMP2, TOL3Z
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARF, DLARFG, DSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. External Functions ..
- LOGICAL DISNAN
- INTEGER IDAMAX
- DOUBLE PRECISION DLAMCH, DNRM2
- EXTERNAL DISNAN, DLAMCH, IDAMAX, DNRM2
- * ..
- * .. Executable Statements ..
- *
- * Initialize INFO
- *
- INFO = 0
- *
- * MINMNFACT in the smallest dimension of the submatrix
- * A(IOFFSET+1:M,1:N) to be factorized.
- *
- * MINMNUPDT is the smallest dimension
- * of the subarray A(IOFFSET+1:M,1:N+NRHS) to be udated, which
- * contains the submatrices A(IOFFSET+1:M,1:N) and
- * B(IOFFSET+1:M,1:NRHS) as column blocks.
- *
- MINMNFACT = MIN( M-IOFFSET, N )
- MINMNUPDT = MIN( M-IOFFSET, N+NRHS )
- KMAX = MIN( KMAX, MINMNFACT )
- TOL3Z = SQRT( DLAMCH( 'Epsilon' ) )
- HUGEVAL = DLAMCH( 'Overflow' )
- *
- * Compute the factorization, KK is the lomn loop index.
- *
- DO KK = 1, KMAX
- *
- I = IOFFSET + KK
- *
- IF( I.EQ.1 ) THEN
- *
- * ============================================================
- *
- * We are at the first column of the original whole matrix A,
- * therefore we use the computed KP1 and MAXC2NRM from the
- * main routine.
- *
-
- KP = KP1
- *
- * ============================================================
- *
- ELSE
- *
- * ============================================================
- *
- * Determine the pivot column in KK-th step, i.e. the index
- * of the column with the maximum 2-norm in the
- * submatrix A(I:M,K:N).
- *
- KP = ( KK-1 ) + IDAMAX( N-KK+1, VN1( KK ), 1 )
- *
- * Determine the maximum column 2-norm and the relative maximum
- * column 2-norm of the submatrix A(I:M,KK:N) in step KK.
- * RELMAXC2NRMK will be computed later, after somecondition
- * checks on MAXC2NRMK.
- *
- MAXC2NRMK = VN1( KP )
- *
- * ============================================================
- *
- * Check if the submatrix A(I:M,KK:N) contains NaN, and set
- * INFO parameter to the column number, where the first NaN
- * is found and return from the routine.
- * We need to check the condition only if the
- * column index (same as row index) of the original whole
- * matrix is larger than 1, since the condition for whole
- * original matrix is checked in the main routine.
- *
- IF( DISNAN( MAXC2NRMK ) ) THEN
- *
- * Set K, the number of factorized columns.
- * that are not zero.
- *
- K = KK - 1
- INFO = K + KP
- *
- * Set RELMAXC2NRMK to NaN.
- *
- RELMAXC2NRMK = MAXC2NRMK
- *
- * Array TAU(K+1:MINMNFACT) is not set and contains
- * undefined elements.
- *
- RETURN
- END IF
- *
- * ============================================================
- *
- * Quick return, if the submatrix A(I:M,KK:N) is
- * a zero matrix.
- * We need to check the condition only if the
- * column index (same as row index) of the original whole
- * matrix is larger than 1, since the condition for whole
- * original matrix is checked in the main routine.
- *
- IF( MAXC2NRMK.EQ.ZERO ) THEN
- *
- * Set K, the number of factorized columns.
- * that are not zero.
- *
- K = KK - 1
- RELMAXC2NRMK = ZERO
- *
- * Set TAUs corresponding to the columns that were not
- * factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to ZERO.
- *
- DO J = KK, MINMNFACT
- TAU( J ) = ZERO
- END DO
- *
- * Return from the routine.
- *
- RETURN
- *
- END IF
- *
- * ============================================================
- *
- * Check if the submatrix A(I:M,KK:N) contains Inf,
- * set INFO parameter to the column number, where
- * the first Inf is found plus N, and continue
- * the computation.
- * We need to check the condition only if the
- * column index (same as row index) of the original whole
- * matrix is larger than 1, since the condition for whole
- * original matrix is checked in the main routine.
- *
- IF( INFO.EQ.0 .AND. MAXC2NRMK.GT.HUGEVAL ) THEN
- INFO = N + KK - 1 + KP
- END IF
- *
- * ============================================================
- *
- * Test for the second and third stopping criteria.
- * NOTE: There is no need to test for ABSTOL >= ZERO, since
- * MAXC2NRMK is non-negative. Similarly, there is no need
- * to test for RELTOL >= ZERO, since RELMAXC2NRMK is
- * non-negative.
- * We need to check the condition only if the
- * column index (same as row index) of the original whole
- * matrix is larger than 1, since the condition for whole
- * original matrix is checked in the main routine.
-
- RELMAXC2NRMK = MAXC2NRMK / MAXC2NRM
- *
- IF( MAXC2NRMK.LE.ABSTOL .OR. RELMAXC2NRMK.LE.RELTOL ) THEN
- *
- * Set K, the number of factorized columns.
- *
- K = KK - 1
- *
- * Set TAUs corresponding to the columns that were not
- * factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to ZERO.
- *
- DO J = KK, MINMNFACT
- TAU( J ) = ZERO
- END DO
- *
- * Return from the routine.
- *
- RETURN
- *
- END IF
- *
- * ============================================================
- *
- * End ELSE of IF(I.EQ.1)
- *
- END IF
- *
- * ===============================================================
- *
- * If the pivot column is not the first column of the
- * subblock A(1:M,KK:N):
- * 1) swap the KK-th column and the KP-th pivot column
- * in A(1:M,1:N);
- * 2) copy the KK-th element into the KP-th element of the partial
- * and exact 2-norm vectors VN1 and VN2. ( Swap is not needed
- * for VN1 and VN2 since we use the element with the index
- * larger than KK in the next loop step.)
- * 3) Save the pivot interchange with the indices relative to the
- * the original matrix A, not the block A(1:M,1:N).
- *
- IF( KP.NE.KK ) THEN
- CALL DSWAP( M, A( 1, KP ), 1, A( 1, KK ), 1 )
- VN1( KP ) = VN1( KK )
- VN2( KP ) = VN2( KK )
- ITEMP = JPIV( KP )
- JPIV( KP ) = JPIV( KK )
- JPIV( KK ) = ITEMP
- END IF
- *
- * Generate elementary reflector H(KK) using the column A(I:M,KK),
- * if the column has more than one element, otherwise
- * the elementary reflector would be an identity matrix,
- * and TAU(KK) = ZERO.
- *
- IF( I.LT.M ) THEN
- CALL DLARFG( M-I+1, A( I, KK ), A( I+1, KK ), 1,
- $ TAU( KK ) )
- ELSE
- TAU( KK ) = ZERO
- END IF
- *
- * Check if TAU(KK) contains NaN, set INFO parameter
- * to the column number where NaN is found and return from
- * the routine.
- * NOTE: There is no need to check TAU(KK) for Inf,
- * since DLARFG cannot produce TAU(KK) or Householder vector
- * below the diagonal containing Inf. Only BETA on the diagonal,
- * returned by DLARFG can contain Inf, which requires
- * TAU(KK) to contain NaN. Therefore, this case of generating Inf
- * by DLARFG is covered by checking TAU(KK) for NaN.
- *
- IF( DISNAN( TAU(KK) ) ) THEN
- K = KK - 1
- INFO = KK
- *
- * Set MAXC2NRMK and RELMAXC2NRMK to NaN.
- *
- MAXC2NRMK = TAU( KK )
- RELMAXC2NRMK = TAU( KK )
- *
- * Array TAU(KK:MINMNFACT) is not set and contains
- * undefined elements, except the first element TAU(KK) = NaN.
- *
- RETURN
- END IF
- *
- * Apply H(KK)**T to A(I:M,KK+1:N+NRHS) from the left.
- * ( If M >= N, then at KK = N there is no residual matrix,
- * i.e. no columns of A to update, only columns of B.
- * If M < N, then at KK = M-IOFFSET, I = M and we have a
- * one-row residual matrix in A and the elementary
- * reflector is a unit matrix, TAU(KK) = ZERO, i.e. no update
- * is needed for the residual matrix in A and the
- * right-hand-side-matrix in B.
- * Therefore, we update only if
- * KK < MINMNUPDT = min(M-IOFFSET, N+NRHS)
- * condition is satisfied, not only KK < N+NRHS )
- *
- IF( KK.LT.MINMNUPDT ) THEN
- AIKK = A( I, KK )
- A( I, KK ) = ONE
- CALL DLARF( 'Left', M-I+1, N+NRHS-KK, A( I, KK ), 1,
- $ TAU( KK ), A( I, KK+1 ), LDA, WORK( 1 ) )
- A( I, KK ) = AIKK
- END IF
- *
- IF( KK.LT.MINMNFACT ) THEN
- *
- * Update the partial column 2-norms for the residual matrix,
- * only if the residual matrix A(I+1:M,KK+1:N) exists, i.e.
- * when KK < min(M-IOFFSET, N).
- *
- DO J = KK + 1, N
- IF( VN1( J ).NE.ZERO ) THEN
- *
- * NOTE: The following lines follow from the analysis in
- * Lapack Working Note 176.
- *
- TEMP = ONE - ( ABS( A( I, J ) ) / VN1( J ) )**2
- TEMP = MAX( TEMP, ZERO )
- TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
- IF( TEMP2 .LE. TOL3Z ) THEN
- *
- * Compute the column 2-norm for the partial
- * column A(I+1:M,J) by explicitly computing it,
- * and store it in both partial 2-norm vector VN1
- * and exact column 2-norm vector VN2.
- *
- VN1( J ) = DNRM2( M-I, A( I+1, J ), 1 )
- VN2( J ) = VN1( J )
- *
- ELSE
- *
- * Update the column 2-norm for the partial
- * column A(I+1:M,J) by removing one
- * element A(I,J) and store it in partial
- * 2-norm vector VN1.
- *
- VN1( J ) = VN1( J )*SQRT( TEMP )
- *
- END IF
- END IF
- END DO
- *
- END IF
- *
- * End factorization loop
- *
- END DO
- *
- * If we reached this point, all colunms have been factorized,
- * i.e. no condition was triggered to exit the routine.
- * Set the number of factorized columns.
- *
- K = KMAX
- *
- * We reached the end of the loop, i.e. all KMAX columns were
- * factorized, we need to set MAXC2NRMK and RELMAXC2NRMK before
- * we return.
- *
- IF( K.LT.MINMNFACT ) THEN
- *
- JMAXC2NRM = K + IDAMAX( N-K, VN1( K+1 ), 1 )
- MAXC2NRMK = VN1( JMAXC2NRM )
- *
- IF( K.EQ.0 ) THEN
- RELMAXC2NRMK = ONE
- ELSE
- RELMAXC2NRMK = MAXC2NRMK / MAXC2NRM
- END IF
- *
- ELSE
- MAXC2NRMK = ZERO
- RELMAXC2NRMK = ZERO
- END IF
- *
- * We reached the end of the loop, i.e. all KMAX columns were
- * factorized, set TAUs corresponding to the columns that were
- * not factorized to ZERO, i.e. TAU(K+1:MINMNFACT) set to ZERO.
- *
- DO J = K + 1, MINMNFACT
- TAU( J ) = ZERO
- END DO
- *
- RETURN
- *
- * End of DLAQP2RK
- *
- END
|