|
- *> \brief \b SLAQZ0
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAQZ0 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz0.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz0.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz0.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B,
- * $ LDB, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, REC,
- * $ INFO )
- * IMPLICIT NONE
- *
- * Arguments
- * CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
- * INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
- * $ REC
- *
- * INTEGER, INTENT( OUT ) :: INFO
- *
- * REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- * $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAQZ0 computes the eigenvalues of a real matrix pair (H,T),
- *> where H is an upper Hessenberg matrix and T is upper triangular,
- *> using the double-shift QZ method.
- *> Matrix pairs of this type are produced by the reduction to
- *> generalized upper Hessenberg form of a real matrix pair (A,B):
- *>
- *> A = Q1*H*Z1**T, B = Q1*T*Z1**T,
- *>
- *> as computed by SGGHRD.
- *>
- *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
- *> also reduced to generalized Schur form,
- *>
- *> H = Q*S*Z**T, T = Q*P*Z**T,
- *>
- *> where Q and Z are orthogonal matrices, P is an upper triangular
- *> matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
- *> diagonal blocks.
- *>
- *> The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
- *> (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
- *> eigenvalues.
- *>
- *> Additionally, the 2-by-2 upper triangular diagonal blocks of P
- *> corresponding to 2-by-2 blocks of S are reduced to positive diagonal
- *> form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
- *> P(j,j) > 0, and P(j+1,j+1) > 0.
- *>
- *> Optionally, the orthogonal matrix Q from the generalized Schur
- *> factorization may be postmultiplied into an input matrix Q1, and the
- *> orthogonal matrix Z may be postmultiplied into an input matrix Z1.
- *> If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced
- *> the matrix pair (A,B) to generalized upper Hessenberg form, then the
- *> output matrices Q1*Q and Z1*Z are the orthogonal factors from the
- *> generalized Schur factorization of (A,B):
- *>
- *> A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
- *>
- *> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
- *> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
- *> complex and beta real.
- *> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
- *> generalized nonsymmetric eigenvalue problem (GNEP)
- *> A*x = lambda*B*x
- *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
- *> alternate form of the GNEP
- *> mu*A*y = B*y.
- *> Real eigenvalues can be read directly from the generalized Schur
- *> form:
- *> alpha = S(i,i), beta = P(i,i).
- *>
- *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
- *> Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
- *> pp. 241--256.
- *>
- *> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
- *> Algorithm with Aggressive Early Deflation", SIAM J. Numer.
- *> Anal., 29(2006), pp. 199--227.
- *>
- *> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
- *> multipole rational QZ method with agressive early deflation"
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTS
- *> \verbatim
- *> WANTS is CHARACTER*1
- *> = 'E': Compute eigenvalues only;
- *> = 'S': Compute eigenvalues and the Schur form.
- *> \endverbatim
- *>
- *> \param[in] WANTQ
- *> \verbatim
- *> WANTQ is CHARACTER*1
- *> = 'N': Left Schur vectors (Q) are not computed;
- *> = 'I': Q is initialized to the unit matrix and the matrix Q
- *> of left Schur vectors of (A,B) is returned;
- *> = 'V': Q must contain an orthogonal matrix Q1 on entry and
- *> the product Q1*Q is returned.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is CHARACTER*1
- *> = 'N': Right Schur vectors (Z) are not computed;
- *> = 'I': Z is initialized to the unit matrix and the matrix Z
- *> of right Schur vectors of (A,B) is returned;
- *> = 'V': Z must contain an orthogonal matrix Z1 on entry and
- *> the product Z1*Z is returned.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A, B, Q, and Z. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *> ILO and IHI mark the rows and columns of A which are in
- *> Hessenberg form. It is assumed that A is already upper
- *> triangular in rows and columns 1:ILO-1 and IHI+1:N.
- *> If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA, N)
- *> On entry, the N-by-N upper Hessenberg matrix A.
- *> On exit, if JOB = 'S', A contains the upper quasi-triangular
- *> matrix S from the generalized Schur factorization.
- *> If JOB = 'E', the diagonal blocks of A match those of S, but
- *> the rest of A is unspecified.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max( 1, N ).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB, N)
- *> On entry, the N-by-N upper triangular matrix B.
- *> On exit, if JOB = 'S', B contains the upper triangular
- *> matrix P from the generalized Schur factorization;
- *> 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
- *> are reduced to positive diagonal form, i.e., if A(j+1,j) is
- *> non-zero, then B(j+1,j) = B(j,j+1) = 0, B(j,j) > 0, and
- *> B(j+1,j+1) > 0.
- *> If JOB = 'E', the diagonal blocks of B match those of P, but
- *> the rest of B is unspecified.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max( 1, N ).
- *> \endverbatim
- *>
- *> \param[out] ALPHAR
- *> \verbatim
- *> ALPHAR is REAL array, dimension (N)
- *> The real parts of each scalar alpha defining an eigenvalue
- *> of GNEP.
- *> \endverbatim
- *>
- *> \param[out] ALPHAI
- *> \verbatim
- *> ALPHAI is REAL array, dimension (N)
- *> The imaginary parts of each scalar alpha defining an
- *> eigenvalue of GNEP.
- *> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
- *> positive, then the j-th and (j+1)-st eigenvalues are a
- *> complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is REAL array, dimension (N)
- *> The scalars beta that define the eigenvalues of GNEP.
- *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
- *> beta = BETA(j) represent the j-th eigenvalue of the matrix
- *> pair (A,B), in one of the forms lambda = alpha/beta or
- *> mu = beta/alpha. Since either lambda or mu may overflow,
- *> they should not, in general, be computed.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is REAL array, dimension (LDQ, N)
- *> On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in
- *> the reduction of (A,B) to generalized Hessenberg form.
- *> On exit, if COMPQ = 'I', the orthogonal matrix of left Schur
- *> vectors of (A,B), and if COMPQ = 'V', the orthogonal matrix
- *> of left Schur vectors of (A,B).
- *> Not referenced if COMPQ = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= 1.
- *> If COMPQ='V' or 'I', then LDQ >= N.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ, N)
- *> On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
- *> the reduction of (A,B) to generalized Hessenberg form.
- *> On exit, if COMPZ = 'I', the orthogonal matrix of
- *> right Schur vectors of (H,T), and if COMPZ = 'V', the
- *> orthogonal matrix of right Schur vectors of (A,B).
- *> Not referenced if COMPZ = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1.
- *> If COMPZ='V' or 'I', then LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[in] REC
- *> \verbatim
- *> REC is INTEGER
- *> REC indicates the current recursion level. Should be set
- *> to 0 on first call.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> = 1,...,N: the QZ iteration did not converge. (A,B) is not
- *> in Schur form, but ALPHAR(i), ALPHAI(i), and
- *> BETA(i), i=INFO+1,...,N should be correct.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Thijs Steel, KU Leuven
- *
- *> \date May 2020
- *
- *> \ingroup doubleGEcomputational
- *>
- * =====================================================================
- RECURSIVE SUBROUTINE SLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A,
- $ LDA, B, LDB, ALPHAR, ALPHAI, BETA,
- $ Q, LDQ, Z, LDZ, WORK, LWORK, REC,
- $ INFO )
- IMPLICIT NONE
-
- * Arguments
- CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
- INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
- $ REC
-
- INTEGER, INTENT( OUT ) :: INFO
-
- REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * ), WORK( * )
-
- * Parameters
- REAL :: ZERO, ONE, HALF
- PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
-
- * Local scalars
- REAL :: SMLNUM, ULP, ESHIFT, SAFMIN, SAFMAX, C1, S1, TEMP, SWAP,
- $ BNORM, BTOL
- INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
- $ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
- $ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
- $ ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
- $ NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST, I
- LOGICAL :: ILSCHUR, ILQ, ILZ
- CHARACTER :: JBCMPZ*3
-
- * External Functions
- EXTERNAL :: XERBLA, SHGEQZ, SLAQZ3, SLAQZ4, SLASET, SLABAD,
- $ SLARTG, SROT
- REAL, EXTERNAL :: SLAMCH, SLANHS
- LOGICAL, EXTERNAL :: LSAME
- INTEGER, EXTERNAL :: ILAENV
-
- *
- * Decode wantS,wantQ,wantZ
- *
- IF( LSAME( WANTS, 'E' ) ) THEN
- ILSCHUR = .FALSE.
- IWANTS = 1
- ELSE IF( LSAME( WANTS, 'S' ) ) THEN
- ILSCHUR = .TRUE.
- IWANTS = 2
- ELSE
- IWANTS = 0
- END IF
-
- IF( LSAME( WANTQ, 'N' ) ) THEN
- ILQ = .FALSE.
- IWANTQ = 1
- ELSE IF( LSAME( WANTQ, 'V' ) ) THEN
- ILQ = .TRUE.
- IWANTQ = 2
- ELSE IF( LSAME( WANTQ, 'I' ) ) THEN
- ILQ = .TRUE.
- IWANTQ = 3
- ELSE
- IWANTQ = 0
- END IF
-
- IF( LSAME( WANTZ, 'N' ) ) THEN
- ILZ = .FALSE.
- IWANTZ = 1
- ELSE IF( LSAME( WANTZ, 'V' ) ) THEN
- ILZ = .TRUE.
- IWANTZ = 2
- ELSE IF( LSAME( WANTZ, 'I' ) ) THEN
- ILZ = .TRUE.
- IWANTZ = 3
- ELSE
- IWANTZ = 0
- END IF
- *
- * Check Argument Values
- *
- INFO = 0
- IF( IWANTS.EQ.0 ) THEN
- INFO = -1
- ELSE IF( IWANTQ.EQ.0 ) THEN
- INFO = -2
- ELSE IF( IWANTZ.EQ.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( ILO.LT.1 ) THEN
- INFO = -5
- ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
- INFO = -6
- ELSE IF( LDA.LT.N ) THEN
- INFO = -8
- ELSE IF( LDB.LT.N ) THEN
- INFO = -10
- ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
- INFO = -15
- ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
- INFO = -17
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLAQZ0', -INFO )
- RETURN
- END IF
-
- *
- * Quick return if possible
- *
- IF( N.LE.0 ) THEN
- WORK( 1 ) = REAL( 1 )
- RETURN
- END IF
-
- *
- * Get the parameters
- *
- JBCMPZ( 1:1 ) = WANTS
- JBCMPZ( 2:2 ) = WANTQ
- JBCMPZ( 3:3 ) = WANTZ
-
- NMIN = ILAENV( 12, 'SLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
-
- NWR = ILAENV( 13, 'SLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
- NWR = MAX( 2, NWR )
- NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
-
- NIBBLE = ILAENV( 14, 'SLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
-
- NSR = ILAENV( 15, 'SLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
- NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
- NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
-
- RCOST = ILAENV( 17, 'SLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
- ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( REAL( RCOST )/100*N ) ) )
- ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4
- NBR = NSR+ITEMP1
-
- IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN
- CALL SHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
- $ LWORK, INFO )
- RETURN
- END IF
-
- *
- * Find out required workspace
- *
-
- * Workspace query to slaqz3
- NW = MAX( NWR, NMIN )
- CALL SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB,
- $ Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHAR,
- $ ALPHAI, BETA, WORK, NW, WORK, NW, WORK, -1, REC,
- $ AED_INFO )
- ITEMP1 = INT( WORK( 1 ) )
- * Workspace query to slaqz4
- CALL SLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHAR,
- $ ALPHAI, BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK,
- $ NBR, WORK, NBR, WORK, -1, SWEEP_INFO )
- ITEMP2 = INT( WORK( 1 ) )
-
- LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 )
- IF ( LWORK .EQ.-1 ) THEN
- WORK( 1 ) = REAL( LWORKREQ )
- RETURN
- ELSE IF ( LWORK .LT. LWORKREQ ) THEN
- INFO = -19
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLAQZ0', INFO )
- RETURN
- END IF
- *
- * Initialize Q and Z
- *
- IF( IWANTQ.EQ.3 ) CALL SLASET( 'FULL', N, N, ZERO, ONE, Q, LDQ )
- IF( IWANTZ.EQ.3 ) CALL SLASET( 'FULL', N, N, ZERO, ONE, Z, LDZ )
-
- * Get machine constants
- SAFMIN = SLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE/SAFMIN
- CALL SLABAD( SAFMIN, SAFMAX )
- ULP = SLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( REAL( N )/ULP )
-
- BNORM = SLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, WORK )
- BTOL = MAX( SAFMIN, ULP*BNORM )
-
- ISTART = ILO
- ISTOP = IHI
- MAXIT = 3*( IHI-ILO+1 )
- LD = 0
-
- DO IITER = 1, MAXIT
- IF( IITER .GE. MAXIT ) THEN
- INFO = ISTOP+1
- GOTO 80
- END IF
- IF ( ISTART+1 .GE. ISTOP ) THEN
- ISTOP = ISTART
- EXIT
- END IF
-
- * Check deflations at the end
- IF ( ABS( A( ISTOP-1, ISTOP-2 ) ) .LE. MAX( SMLNUM,
- $ ULP*( ABS( A( ISTOP-1, ISTOP-1 ) )+ABS( A( ISTOP-2,
- $ ISTOP-2 ) ) ) ) ) THEN
- A( ISTOP-1, ISTOP-2 ) = ZERO
- ISTOP = ISTOP-2
- LD = 0
- ESHIFT = ZERO
- ELSE IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM,
- $ ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1,
- $ ISTOP-1 ) ) ) ) ) THEN
- A( ISTOP, ISTOP-1 ) = ZERO
- ISTOP = ISTOP-1
- LD = 0
- ESHIFT = ZERO
- END IF
- * Check deflations at the start
- IF ( ABS( A( ISTART+2, ISTART+1 ) ) .LE. MAX( SMLNUM,
- $ ULP*( ABS( A( ISTART+1, ISTART+1 ) )+ABS( A( ISTART+2,
- $ ISTART+2 ) ) ) ) ) THEN
- A( ISTART+2, ISTART+1 ) = ZERO
- ISTART = ISTART+2
- LD = 0
- ESHIFT = ZERO
- ELSE IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM,
- $ ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1,
- $ ISTART+1 ) ) ) ) ) THEN
- A( ISTART+1, ISTART ) = ZERO
- ISTART = ISTART+1
- LD = 0
- ESHIFT = ZERO
- END IF
-
- IF ( ISTART+1 .GE. ISTOP ) THEN
- EXIT
- END IF
-
- * Check interior deflations
- ISTART2 = ISTART
- DO K = ISTOP, ISTART+1, -1
- IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K,
- $ K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN
- A( K, K-1 ) = ZERO
- ISTART2 = K
- EXIT
- END IF
- END DO
-
- * Get range to apply rotations to
- IF ( ILSCHUR ) THEN
- ISTARTM = 1
- ISTOPM = N
- ELSE
- ISTARTM = ISTART2
- ISTOPM = ISTOP
- END IF
-
- * Check infinite eigenvalues, this is done without blocking so might
- * slow down the method when many infinite eigenvalues are present
- K = ISTOP
- DO WHILE ( K.GE.ISTART2 )
-
- IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
- * A diagonal element of B is negligable, move it
- * to the top and deflate it
-
- DO K2 = K, ISTART2+1, -1
- CALL SLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, S1,
- $ TEMP )
- B( K2-1, K2 ) = TEMP
- B( K2-1, K2-1 ) = ZERO
-
- CALL SROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1,
- $ B( ISTARTM, K2-1 ), 1, C1, S1 )
- CALL SROT( MIN( K2+1, ISTOP )-ISTARTM+1, A( ISTARTM,
- $ K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 )
- IF ( ILZ ) THEN
- CALL SROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, C1,
- $ S1 )
- END IF
-
- IF( K2.LT.ISTOP ) THEN
- CALL SLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1,
- $ S1, TEMP )
- A( K2, K2-1 ) = TEMP
- A( K2+1, K2-1 ) = ZERO
-
- CALL SROT( ISTOPM-K2+1, A( K2, K2 ), LDA, A( K2+1,
- $ K2 ), LDA, C1, S1 )
- CALL SROT( ISTOPM-K2+1, B( K2, K2 ), LDB, B( K2+1,
- $ K2 ), LDB, C1, S1 )
- IF( ILQ ) THEN
- CALL SROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1,
- $ C1, S1 )
- END IF
- END IF
-
- END DO
-
- IF( ISTART2.LT.ISTOP )THEN
- CALL SLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1,
- $ ISTART2 ), C1, S1, TEMP )
- A( ISTART2, ISTART2 ) = TEMP
- A( ISTART2+1, ISTART2 ) = ZERO
-
- CALL SROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2,
- $ ISTART2+1 ), LDA, A( ISTART2+1,
- $ ISTART2+1 ), LDA, C1, S1 )
- CALL SROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2,
- $ ISTART2+1 ), LDB, B( ISTART2+1,
- $ ISTART2+1 ), LDB, C1, S1 )
- IF( ILQ ) THEN
- CALL SROT( N, Q( 1, ISTART2 ), 1, Q( 1,
- $ ISTART2+1 ), 1, C1, S1 )
- END IF
- END IF
-
- ISTART2 = ISTART2+1
-
- END IF
- K = K-1
- END DO
-
- * istart2 now points to the top of the bottom right
- * unreduced Hessenberg block
- IF ( ISTART2 .GE. ISTOP ) THEN
- ISTOP = ISTART2-1
- LD = 0
- ESHIFT = ZERO
- CYCLE
- END IF
-
- NW = NWR
- NSHIFTS = NSR
- NBLOCK = NBR
-
- IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN
- * Setting nw to the size of the subblock will make AED deflate
- * all the eigenvalues. This is slightly more efficient than just
- * using qz_small because the off diagonal part gets updated via BLAS.
- IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN
- NW = ISTOP-ISTART+1
- ISTART2 = ISTART
- ELSE
- NW = ISTOP-ISTART2+1
- END IF
- END IF
-
- *
- * Time for AED
- *
- CALL SLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, LDA,
- $ B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED,
- $ ALPHAR, ALPHAI, BETA, WORK, NW, WORK( NW**2+1 ),
- $ NW, WORK( 2*NW**2+1 ), LWORK-2*NW**2, REC,
- $ AED_INFO )
-
- IF ( N_DEFLATED > 0 ) THEN
- ISTOP = ISTOP-N_DEFLATED
- LD = 0
- ESHIFT = ZERO
- END IF
-
- IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR.
- $ ISTOP-ISTART2+1 .LT. NMIN ) THEN
- * AED has uncovered many eigenvalues. Skip a QZ sweep and run
- * AED again.
- CYCLE
- END IF
-
- LD = LD+1
-
- NS = MIN( NSHIFTS, ISTOP-ISTART2 )
- NS = MIN( NS, N_UNDEFLATED )
- SHIFTPOS = ISTOP-N_DEFLATED-N_UNDEFLATED+1
- *
- * Shuffle shifts to put double shifts in front
- * This ensures that we don't split up a double shift
- *
- DO I = SHIFTPOS, SHIFTPOS+N_UNDEFLATED-1, 2
- IF( ALPHAI( I ).NE.-ALPHAI( I+1 ) ) THEN
- *
- SWAP = ALPHAR( I )
- ALPHAR( I ) = ALPHAR( I+1 )
- ALPHAR( I+1 ) = ALPHAR( I+2 )
- ALPHAR( I+2 ) = SWAP
-
- SWAP = ALPHAI( I )
- ALPHAI( I ) = ALPHAI( I+1 )
- ALPHAI( I+1 ) = ALPHAI( I+2 )
- ALPHAI( I+2 ) = SWAP
-
- SWAP = BETA( I )
- BETA( I ) = BETA( I+1 )
- BETA( I+1 ) = BETA( I+2 )
- BETA( I+2 ) = SWAP
- END IF
- END DO
-
- IF ( MOD( LD, 6 ) .EQ. 0 ) THEN
- *
- * Exceptional shift. Chosen for no particularly good reason.
- *
- IF( ( REAL( MAXIT )*SAFMIN )*ABS( A( ISTOP,
- $ ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN
- ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 )
- ELSE
- ESHIFT = ESHIFT+ONE/( SAFMIN*REAL( MAXIT ) )
- END IF
- ALPHAR( SHIFTPOS ) = ONE
- ALPHAR( SHIFTPOS+1 ) = ZERO
- ALPHAI( SHIFTPOS ) = ZERO
- ALPHAI( SHIFTPOS+1 ) = ZERO
- BETA( SHIFTPOS ) = ESHIFT
- BETA( SHIFTPOS+1 ) = ESHIFT
- NS = 2
- END IF
-
- *
- * Time for a QZ sweep
- *
- CALL SLAQZ4( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, NBLOCK,
- $ ALPHAR( SHIFTPOS ), ALPHAI( SHIFTPOS ),
- $ BETA( SHIFTPOS ), A, LDA, B, LDB, Q, LDQ, Z, LDZ,
- $ WORK, NBLOCK, WORK( NBLOCK**2+1 ), NBLOCK,
- $ WORK( 2*NBLOCK**2+1 ), LWORK-2*NBLOCK**2,
- $ SWEEP_INFO )
-
- END DO
-
- *
- * Call SHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
- * If all the eigenvalues have been found, SHGEQZ will not do any iterations
- * and only normalize the blocks. In case of a rare convergence failure,
- * the single shift might perform better.
- *
- 80 CALL SHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
- $ NORM_INFO )
-
- INFO = NORM_INFO
-
- END SUBROUTINE
|