|
- *> \brief \b DSPT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDC, N
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSPT01 reconstructs a symmetric indefinite packed matrix A from its
- *> block L*D*L' or U*D*U' factorization and computes the residual
- *> norm( C - A ) / ( N * norm(A) * EPS ),
- *> where C is the reconstructed matrix and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> The original symmetric matrix A, stored as a packed
- *> triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] AFAC
- *> \verbatim
- *> AFAC is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> The factored form of the matrix A, stored as a packed
- *> triangular matrix. AFAC contains the block diagonal matrix D
- *> and the multipliers used to obtain the factor L or U from the
- *> block L*D*L' or U*D*U' factorization as computed by DSPTRF.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from DSPTRF.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC,N)
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDC, N
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J, JC
- DOUBLE PRECISION ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANSP, DLANSY
- EXTERNAL LSAME, DLAMCH, DLANSP, DLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASET, DLAVSP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Determine EPS and the norm of A.
- *
- EPS = DLAMCH( 'Epsilon' )
- ANORM = DLANSP( '1', UPLO, N, A, RWORK )
- *
- * Initialize C to the identity matrix.
- *
- CALL DLASET( 'Full', N, N, ZERO, ONE, C, LDC )
- *
- * Call DLAVSP to form the product D * U' (or D * L' ).
- *
- CALL DLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
- $ LDC, INFO )
- *
- * Call DLAVSP again to multiply by U ( or L ).
- *
- CALL DLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
- $ LDC, INFO )
- *
- * Compute the difference C - A .
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- JC = 0
- DO 20 J = 1, N
- DO 10 I = 1, J
- C( I, J ) = C( I, J ) - A( JC+I )
- 10 CONTINUE
- JC = JC + J
- 20 CONTINUE
- ELSE
- JC = 1
- DO 40 J = 1, N
- DO 30 I = J, N
- C( I, J ) = C( I, J ) - A( JC+I-J )
- 30 CONTINUE
- JC = JC + N - J + 1
- 40 CONTINUE
- END IF
- *
- * Compute norm( C - A ) / ( N * norm(A) * EPS )
- *
- RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
- END IF
- *
- RETURN
- *
- * End of DSPT01
- *
- END
|