|
- C> \brief \b CGETRF VARIANT: left-looking Level 3 BLAS version of the algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGETRF ( M, N, A, LDA, IPIV, INFO)
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * )
- * ..
- *
- * Purpose
- * =======
- *
- C>\details \b Purpose:
- C>\verbatim
- C>
- C> CGETRF computes an LU factorization of a general M-by-N matrix A
- C> using partial pivoting with row interchanges.
- C>
- C> The factorization has the form
- C> A = P * L * U
- C> where P is a permutation matrix, L is lower triangular with unit
- C> diagonal elements (lower trapezoidal if m > n), and U is upper
- C> triangular (upper trapezoidal if m < n).
- C>
- C> This is the left-looking Level 3 BLAS version of the algorithm.
- C>
- C>\endverbatim
- *
- * Arguments:
- * ==========
- *
- C> \param[in] M
- C> \verbatim
- C> M is INTEGER
- C> The number of rows of the matrix A. M >= 0.
- C> \endverbatim
- C>
- C> \param[in] N
- C> \verbatim
- C> N is INTEGER
- C> The number of columns of the matrix A. N >= 0.
- C> \endverbatim
- C>
- C> \param[in,out] A
- C> \verbatim
- C> A is COMPLEX array, dimension (LDA,N)
- C> On entry, the M-by-N matrix to be factored.
- C> On exit, the factors L and U from the factorization
- C> A = P*L*U; the unit diagonal elements of L are not stored.
- C> \endverbatim
- C>
- C> \param[in] LDA
- C> \verbatim
- C> LDA is INTEGER
- C> The leading dimension of the array A. LDA >= max(1,M).
- C> \endverbatim
- C>
- C> \param[out] IPIV
- C> \verbatim
- C> IPIV is INTEGER array, dimension (min(M,N))
- C> The pivot indices; for 1 <= i <= min(M,N), row i of the
- C> matrix was interchanged with row IPIV(i).
- C> \endverbatim
- C>
- C> \param[out] INFO
- C> \verbatim
- C> INFO is INTEGER
- C> = 0: successful exit
- C> < 0: if INFO = -i, the i-th argument had an illegal value
- C> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- C> has been completed, but the factor U is exactly
- C> singular, and division by zero will occur if it is used
- C> to solve a system of equations.
- C> \endverbatim
- C>
- *
- * Authors:
- * ========
- *
- C> \author Univ. of Tennessee
- C> \author Univ. of California Berkeley
- C> \author Univ. of Colorado Denver
- C> \author NAG Ltd.
- *
- C> \date December 2016
- *
- C> \ingroup variantsGEcomputational
- *
- * =====================================================================
- SUBROUTINE CGETRF ( M, N, A, LDA, IPIV, INFO)
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = (1.0E+0, 0.0E+0) )
- * ..
- * .. Local Scalars ..
- INTEGER I, IINFO, J, JB, K, NB
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CGETF2, CLASWP, CTRSM, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGETRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'CGETRF', ' ', M, N, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
- *
- * Use unblocked code.
- *
- CALL CGETF2( M, N, A, LDA, IPIV, INFO )
-
- ELSE
- *
- * Use blocked code.
- *
- DO 20 J = 1, MIN( M, N ), NB
- JB = MIN( MIN( M, N )-J+1, NB )
- *
- *
- * Update before factoring the current panel
- *
- DO 30 K = 1, J-NB, NB
- *
- * Apply interchanges to rows K:K+NB-1.
- *
- CALL CLASWP( JB, A(1, J), LDA, K, K+NB-1, IPIV, 1 )
- *
- * Compute block row of U.
- *
- CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
- $ NB, JB, ONE, A( K, K ), LDA,
- $ A( K, J ), LDA )
- *
- * Update trailing submatrix.
- *
- CALL CGEMM( 'No transpose', 'No transpose',
- $ M-K-NB+1, JB, NB, -ONE,
- $ A( K+NB, K ), LDA, A( K, J ), LDA, ONE,
- $ A( K+NB, J ), LDA )
- 30 CONTINUE
- *
- * Factor diagonal and subdiagonal blocks and test for exact
- * singularity.
- *
- CALL CGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
- *
- * Adjust INFO and the pivot indices.
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + J - 1
- DO 10 I = J, MIN( M, J+JB-1 )
- IPIV( I ) = J - 1 + IPIV( I )
- 10 CONTINUE
- *
- 20 CONTINUE
-
- *
- * Apply interchanges to the left-overs
- *
- DO 40 K = 1, MIN( M, N ), NB
- CALL CLASWP( K-1, A( 1, 1 ), LDA, K,
- $ MIN (K+NB-1, MIN ( M, N )), IPIV, 1 )
- 40 CONTINUE
- *
- * Apply update to the M+1:N columns when N > M
- *
- IF ( N.GT.M ) THEN
-
- CALL CLASWP( N-M, A(1, M+1), LDA, 1, M, IPIV, 1 )
-
- DO 50 K = 1, M, NB
-
- JB = MIN( M-K+1, NB )
- *
- CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
- $ JB, N-M, ONE, A( K, K ), LDA,
- $ A( K, M+1 ), LDA )
-
- *
- IF ( K+NB.LE.M ) THEN
- CALL CGEMM( 'No transpose', 'No transpose',
- $ M-K-NB+1, N-M, NB, -ONE,
- $ A( K+NB, K ), LDA, A( K, M+1 ), LDA, ONE,
- $ A( K+NB, M+1 ), LDA )
- END IF
- 50 CONTINUE
- END IF
- *
- END IF
- RETURN
- *
- * End of CGETRF
- *
- END
|