|
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static integer c__2 = 2;
- static integer c__1 = 1;
- static doublereal c_b24 = 1.;
- static doublereal c_b26 = 0.;
-
- /* > \brief \b DLAEDA used by sstedc. Computes the Z vector determining the rank-one modification of the diago
- nal matrix. Used when the original matrix is dense. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLAEDA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, */
- /* GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO ) */
-
- /* INTEGER CURLVL, CURPBM, INFO, N, TLVLS */
- /* INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ), */
- /* $ PRMPTR( * ), QPTR( * ) */
- /* DOUBLE PRECISION GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLAEDA computes the Z vector corresponding to the merge step in the */
- /* > CURLVLth step of the merge process with TLVLS steps for the CURPBMth */
- /* > problem. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TLVLS */
- /* > \verbatim */
- /* > TLVLS is INTEGER */
- /* > The total number of merging levels in the overall divide and */
- /* > conquer tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CURLVL */
- /* > \verbatim */
- /* > CURLVL is INTEGER */
- /* > The current level in the overall merge routine, */
- /* > 0 <= curlvl <= tlvls. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CURPBM */
- /* > \verbatim */
- /* > CURPBM is INTEGER */
- /* > The current problem in the current level in the overall */
- /* > merge routine (counting from upper left to lower right). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PRMPTR */
- /* > \verbatim */
- /* > PRMPTR is INTEGER array, dimension (N lg N) */
- /* > Contains a list of pointers which indicate where in PERM a */
- /* > level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */
- /* > indicates the size of the permutation and incidentally the */
- /* > size of the full, non-deflated problem. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PERM */
- /* > \verbatim */
- /* > PERM is INTEGER array, dimension (N lg N) */
- /* > Contains the permutations (from deflation and sorting) to be */
- /* > applied to each eigenblock. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVPTR */
- /* > \verbatim */
- /* > GIVPTR is INTEGER array, dimension (N lg N) */
- /* > Contains a list of pointers which indicate where in GIVCOL a */
- /* > level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */
- /* > indicates the number of Givens rotations. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVCOL */
- /* > \verbatim */
- /* > GIVCOL is INTEGER array, dimension (2, N lg N) */
- /* > Each pair of numbers indicates a pair of columns to take place */
- /* > in a Givens rotation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVNUM */
- /* > \verbatim */
- /* > GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N) */
- /* > Each number indicates the S value to be used in the */
- /* > corresponding Givens rotation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (N**2) */
- /* > Contains the square eigenblocks from previous levels, the */
- /* > starting positions for blocks are given by QPTR. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] QPTR */
- /* > \verbatim */
- /* > QPTR is INTEGER array, dimension (N+2) */
- /* > Contains a list of pointers which indicate where in Q an */
- /* > eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates */
- /* > the size of the block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (N) */
- /* > On output this vector contains the updating vector (the last */
- /* > row of the first sub-eigenvector matrix and the first row of */
- /* > the second sub-eigenvector matrix). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ZTEMP */
- /* > \verbatim */
- /* > ZTEMP is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Jeff Rutter, Computer Science Division, University of California */
- /* > at Berkeley, USA */
-
- /* ===================================================================== */
- /* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl,
- integer *curpbm, integer *prmptr, integer *perm, integer *givptr,
- integer *givcol, doublereal *givnum, doublereal *q, integer *qptr,
- doublereal *z__, doublereal *ztemp, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3;
-
- /* Local variables */
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer curr, bsiz1, bsiz2, psiz1, psiz2, i__, k, zptr1;
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *), xerbla_(char *,
- integer *, ftnlen);
- integer mid, ptr;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --ztemp;
- --z__;
- --qptr;
- --q;
- givnum -= 3;
- givcol -= 3;
- --givptr;
- --perm;
- --prmptr;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -1;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAEDA", &i__1, (ftnlen)6);
- return 0;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- /* Determine location of first number in second half. */
-
- mid = *n / 2 + 1;
-
- /* Gather last/first rows of appropriate eigenblocks into center of Z */
-
- ptr = 1;
-
- /* Determine location of lowest level subproblem in the full storage */
- /* scheme */
-
- i__1 = *curlvl - 1;
- curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
-
- /* Determine size of these matrices. We add HALF to the value of */
- /* the SQRT in case the machine underestimates one of these square */
- /* roots. */
-
- bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
- bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) +
- .5);
- i__1 = mid - bsiz1 - 1;
- for (k = 1; k <= i__1; ++k) {
- z__[k] = 0.;
- /* L10: */
- }
- dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
- c__1);
- dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
- i__1 = *n;
- for (k = mid + bsiz2; k <= i__1; ++k) {
- z__[k] = 0.;
- /* L20: */
- }
-
- /* Loop through remaining levels 1 -> CURLVL applying the Givens */
- /* rotations and permutation and then multiplying the center matrices */
- /* against the current Z. */
-
- ptr = pow_ii(&c__2, tlvls) + 1;
- i__1 = *curlvl - 1;
- for (k = 1; k <= i__1; ++k) {
- i__2 = *curlvl - k;
- i__3 = *curlvl - k - 1;
- curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) -
- 1;
- psiz1 = prmptr[curr + 1] - prmptr[curr];
- psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
- zptr1 = mid - psiz1;
-
- /* Apply Givens at CURR and CURR+1 */
-
- i__2 = givptr[curr + 1] - 1;
- for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
- drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &
- z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(
- i__ << 1) + 1], &givnum[(i__ << 1) + 2]);
- /* L30: */
- }
- i__2 = givptr[curr + 2] - 1;
- for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
- drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[
- mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ <<
- 1) + 1], &givnum[(i__ << 1) + 2]);
- /* L40: */
- }
- psiz1 = prmptr[curr + 1] - prmptr[curr];
- psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
- i__2 = psiz1 - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
- /* L50: */
- }
- i__2 = psiz2 - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] -
- 1];
- /* L60: */
- }
-
- /* Multiply Blocks at CURR and CURR+1 */
-
- /* Determine size of these matrices. We add HALF to the value of */
- /* the SQRT in case the machine underestimates one of these */
- /* square roots. */
-
- bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) +
- .5);
- bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])
- ) + .5);
- if (bsiz1 > 0) {
- dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &
- ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);
- }
- i__2 = psiz1 - bsiz1;
- dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
- if (bsiz2 > 0) {
- dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &
- ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);
- }
- i__2 = psiz2 - bsiz2;
- dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
- c__1);
-
- i__2 = *tlvls - k;
- ptr += pow_ii(&c__2, &i__2);
- /* L70: */
- }
-
- return 0;
-
- /* End of DLAEDA */
-
- } /* dlaeda_ */
|