|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b ZTRSYL */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZTRSYL + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsyl.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsyl.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsyl.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
- /* LDC, SCALE, INFO ) */
-
- /* CHARACTER TRANA, TRANB */
- /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
- /* DOUBLE PRECISION SCALE */
- /* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZTRSYL solves the complex Sylvester matrix equation: */
- /* > */
- /* > op(A)*X + X*op(B) = scale*C or */
- /* > op(A)*X - X*op(B) = scale*C, */
- /* > */
- /* > where op(A) = A or A**H, and A and B are both upper triangular. A is */
- /* > M-by-M and B is N-by-N; the right hand side C and the solution X are */
- /* > M-by-N; and scale is an output scale factor, set <= 1 to avoid */
- /* > overflow in X. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANA */
- /* > \verbatim */
- /* > TRANA is CHARACTER*1 */
- /* > Specifies the option op(A): */
- /* > = 'N': op(A) = A (No transpose) */
- /* > = 'C': op(A) = A**H (Conjugate transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANB */
- /* > \verbatim */
- /* > TRANB is CHARACTER*1 */
- /* > Specifies the option op(B): */
- /* > = 'N': op(B) = B (No transpose) */
- /* > = 'C': op(B) = B**H (Conjugate transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ISGN */
- /* > \verbatim */
- /* > ISGN is INTEGER */
- /* > Specifies the sign in the equation: */
- /* > = +1: solve op(A)*X + X*op(B) = scale*C */
- /* > = -1: solve op(A)*X - X*op(B) = scale*C */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The order of the matrix A, and the number of rows in the */
- /* > matrices X and C. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix B, and the number of columns in the */
- /* > matrices X and C. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,M) */
- /* > The upper triangular matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB,N) */
- /* > The upper triangular matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] C */
- /* > \verbatim */
- /* > C is COMPLEX*16 array, dimension (LDC,N) */
- /* > On entry, the M-by-N right hand side matrix C. */
- /* > On exit, C is overwritten by the solution matrix X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is DOUBLE PRECISION */
- /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > = 1: A and B have common or very close eigenvalues; perturbed */
- /* > values were used to solve the equation (but the matrices */
- /* > A and B are unchanged). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16SYcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void ztrsyl_(char *trana, char *tranb, integer *isgn, integer
- *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *b,
- integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Local variables */
- doublereal smin;
- doublecomplex suml, sumr;
- integer j, k, l;
- extern logical lsame_(char *, char *);
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *), zdotu_(
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- doublecomplex a11;
- doublereal db;
- extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
- extern doublereal dlamch_(char *);
- doublecomplex x11;
- doublereal scaloc;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
- integer *, doublereal *);
- doublereal bignum;
- extern /* Subroutine */ void zdscal_(integer *, doublereal *,
- doublecomplex *, integer *);
- extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
- doublecomplex *);
- logical notrna, notrnb;
- doublereal smlnum, da11;
- doublecomplex vec;
- doublereal dum[1], eps, sgn;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and Test input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- notrna = lsame_(trana, "N");
- notrnb = lsame_(tranb, "N");
-
- *info = 0;
- if (! notrna && ! lsame_(trana, "C")) {
- *info = -1;
- } else if (! notrnb && ! lsame_(tranb, "C")) {
- *info = -2;
- } else if (*isgn != 1 && *isgn != -1) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldc < f2cmax(1,*m)) {
- *info = -11;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZTRSYL", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- *scale = 1.;
- if (*m == 0 || *n == 0) {
- return;
- }
-
- /* Set constants to control overflow */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S");
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- smlnum = smlnum * (doublereal) (*m * *n) / eps;
- bignum = 1. / smlnum;
- /* Computing MAX */
- d__1 = smlnum, d__2 = eps * zlange_("M", m, m, &a[a_offset], lda, dum), d__1 = f2cmax(d__1,d__2), d__2 = eps * zlange_("M", n, n,
- &b[b_offset], ldb, dum);
- smin = f2cmax(d__1,d__2);
- sgn = (doublereal) (*isgn);
-
- if (notrna && notrnb) {
-
- /* Solve A*X + ISGN*X*B = scale*C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* bottom-left corner column by column by */
-
- /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
-
- /* Where */
- /* M L-1 */
- /* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
- /* I=K+1 J=1 */
-
- i__1 = *n;
- for (l = 1; l <= i__1; ++l) {
- for (k = *m; k >= 1; --k) {
-
- i__2 = *m - k;
- /* Computing MIN */
- i__3 = k + 1;
- /* Computing MIN */
- i__4 = k + 1;
- zdotu_(&z__1, &i__2, &a[k + f2cmin(i__3,*m) * a_dim1], lda, &c__[
- f2cmin(i__4,*m) + l * c_dim1], &c__1);
- suml.r = z__1.r, suml.i = z__1.i;
- i__2 = l - 1;
- zdotu_(&z__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
- , &c__1);
- sumr.r = z__1.r, sumr.i = z__1.i;
- i__2 = k + l * c_dim1;
- z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
- z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
- z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
- vec.r = z__1.r, vec.i = z__1.i;
-
- scaloc = 1.;
- i__2 = k + k * a_dim1;
- i__3 = l + l * b_dim1;
- z__2.r = sgn * b[i__3].r, z__2.i = sgn * b[i__3].i;
- z__1.r = a[i__2].r + z__2.r, z__1.i = a[i__2].i + z__2.i;
- a11.r = z__1.r, a11.i = z__1.i;
- da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
- d__2));
- if (da11 <= smin) {
- a11.r = smin, a11.i = 0.;
- da11 = smin;
- *info = 1;
- }
- db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
- d__2));
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
- z__3.r = scaloc, z__3.i = 0.;
- z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
- z__3.i + vec.i * z__3.r;
- zladiv_(&z__1, &z__2, &a11);
- x11.r = z__1.r, x11.i = z__1.i;
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L10: */
- }
- *scale *= scaloc;
- }
- i__2 = k + l * c_dim1;
- c__[i__2].r = x11.r, c__[i__2].i = x11.i;
-
- /* L20: */
- }
- /* L30: */
- }
-
- } else if (! notrna && notrnb) {
-
- /* Solve A**H *X + ISGN*X*B = scale*C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* upper-left corner column by column by */
-
- /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
-
- /* Where */
- /* K-1 L-1 */
- /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
- /* I=1 J=1 */
-
- i__1 = *n;
- for (l = 1; l <= i__1; ++l) {
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
-
- i__3 = k - 1;
- zdotc_(&z__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l *
- c_dim1 + 1], &c__1);
- suml.r = z__1.r, suml.i = z__1.i;
- i__3 = l - 1;
- zdotu_(&z__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
- , &c__1);
- sumr.r = z__1.r, sumr.i = z__1.i;
- i__3 = k + l * c_dim1;
- z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
- z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
- z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
- vec.r = z__1.r, vec.i = z__1.i;
-
- scaloc = 1.;
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- i__3 = l + l * b_dim1;
- z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- a11.r = z__1.r, a11.i = z__1.i;
- da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
- d__2));
- if (da11 <= smin) {
- a11.r = smin, a11.i = 0.;
- da11 = smin;
- *info = 1;
- }
- db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
- d__2));
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
-
- z__3.r = scaloc, z__3.i = 0.;
- z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
- z__3.i + vec.i * z__3.r;
- zladiv_(&z__1, &z__2, &a11);
- x11.r = z__1.r, x11.i = z__1.i;
-
- if (scaloc != 1.) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L40: */
- }
- *scale *= scaloc;
- }
- i__3 = k + l * c_dim1;
- c__[i__3].r = x11.r, c__[i__3].i = x11.i;
-
- /* L50: */
- }
- /* L60: */
- }
-
- } else if (! notrna && ! notrnb) {
-
- /* Solve A**H*X + ISGN*X*B**H = C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* upper-right corner column by column by */
-
- /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
-
- /* Where */
- /* K-1 */
- /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + */
- /* I=1 */
- /* N */
- /* ISGN*SUM [X(K,J)*B**H(L,J)]. */
- /* J=L+1 */
-
- for (l = *n; l >= 1; --l) {
- i__1 = *m;
- for (k = 1; k <= i__1; ++k) {
-
- i__2 = k - 1;
- zdotc_(&z__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l *
- c_dim1 + 1], &c__1);
- suml.r = z__1.r, suml.i = z__1.i;
- i__2 = *n - l;
- /* Computing MIN */
- i__3 = l + 1;
- /* Computing MIN */
- i__4 = l + 1;
- zdotc_(&z__1, &i__2, &c__[k + f2cmin(i__3,*n) * c_dim1], ldc, &b[
- l + f2cmin(i__4,*n) * b_dim1], ldb);
- sumr.r = z__1.r, sumr.i = z__1.i;
- i__2 = k + l * c_dim1;
- d_cnjg(&z__4, &sumr);
- z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
- z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
- z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
- vec.r = z__1.r, vec.i = z__1.i;
-
- scaloc = 1.;
- i__2 = k + k * a_dim1;
- i__3 = l + l * b_dim1;
- z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
- z__2.r = a[i__2].r + z__3.r, z__2.i = a[i__2].i + z__3.i;
- d_cnjg(&z__1, &z__2);
- a11.r = z__1.r, a11.i = z__1.i;
- da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
- d__2));
- if (da11 <= smin) {
- a11.r = smin, a11.i = 0.;
- da11 = smin;
- *info = 1;
- }
- db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
- d__2));
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
-
- z__3.r = scaloc, z__3.i = 0.;
- z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
- z__3.i + vec.i * z__3.r;
- zladiv_(&z__1, &z__2, &a11);
- x11.r = z__1.r, x11.i = z__1.i;
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L70: */
- }
- *scale *= scaloc;
- }
- i__2 = k + l * c_dim1;
- c__[i__2].r = x11.r, c__[i__2].i = x11.i;
-
- /* L80: */
- }
- /* L90: */
- }
-
- } else if (notrna && ! notrnb) {
-
- /* Solve A*X + ISGN*X*B**H = C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* bottom-left corner column by column by */
-
- /* A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
-
- /* Where */
- /* M N */
- /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)] */
- /* I=K+1 J=L+1 */
-
- for (l = *n; l >= 1; --l) {
- for (k = *m; k >= 1; --k) {
-
- i__1 = *m - k;
- /* Computing MIN */
- i__2 = k + 1;
- /* Computing MIN */
- i__3 = k + 1;
- zdotu_(&z__1, &i__1, &a[k + f2cmin(i__2,*m) * a_dim1], lda, &c__[
- f2cmin(i__3,*m) + l * c_dim1], &c__1);
- suml.r = z__1.r, suml.i = z__1.i;
- i__1 = *n - l;
- /* Computing MIN */
- i__2 = l + 1;
- /* Computing MIN */
- i__3 = l + 1;
- zdotc_(&z__1, &i__1, &c__[k + f2cmin(i__2,*n) * c_dim1], ldc, &b[
- l + f2cmin(i__3,*n) * b_dim1], ldb);
- sumr.r = z__1.r, sumr.i = z__1.i;
- i__1 = k + l * c_dim1;
- d_cnjg(&z__4, &sumr);
- z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
- z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
- z__1.r = c__[i__1].r - z__2.r, z__1.i = c__[i__1].i - z__2.i;
- vec.r = z__1.r, vec.i = z__1.i;
-
- scaloc = 1.;
- i__1 = k + k * a_dim1;
- d_cnjg(&z__3, &b[l + l * b_dim1]);
- z__2.r = sgn * z__3.r, z__2.i = sgn * z__3.i;
- z__1.r = a[i__1].r + z__2.r, z__1.i = a[i__1].i + z__2.i;
- a11.r = z__1.r, a11.i = z__1.i;
- da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
- d__2));
- if (da11 <= smin) {
- a11.r = smin, a11.i = 0.;
- da11 = smin;
- *info = 1;
- }
- db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
- d__2));
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
-
- z__3.r = scaloc, z__3.i = 0.;
- z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
- z__3.i + vec.i * z__3.r;
- zladiv_(&z__1, &z__2, &a11);
- x11.r = z__1.r, x11.i = z__1.i;
-
- if (scaloc != 1.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L100: */
- }
- *scale *= scaloc;
- }
- i__1 = k + l * c_dim1;
- c__[i__1].r = x11.r, c__[i__1].i = x11.i;
-
- /* L110: */
- }
- /* L120: */
- }
-
- }
-
- return;
-
- /* End of ZTRSYL */
-
- } /* ztrsyl_ */
|