|
- *> \brief \b ZTRSNA
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZTRSNA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsna.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsna.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsna.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
- * LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER HOWMNY, JOB
- * INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- * LOGICAL SELECT( * )
- * DOUBLE PRECISION RWORK( * ), S( * ), SEP( * )
- * COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
- * $ WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTRSNA estimates reciprocal condition numbers for specified
- *> eigenvalues and/or right eigenvectors of a complex upper triangular
- *> matrix T (or of any matrix Q*T*Q**H with Q unitary).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is CHARACTER*1
- *> Specifies whether condition numbers are required for
- *> eigenvalues (S) or eigenvectors (SEP):
- *> = 'E': for eigenvalues only (S);
- *> = 'V': for eigenvectors only (SEP);
- *> = 'B': for both eigenvalues and eigenvectors (S and SEP).
- *> \endverbatim
- *>
- *> \param[in] HOWMNY
- *> \verbatim
- *> HOWMNY is CHARACTER*1
- *> = 'A': compute condition numbers for all eigenpairs;
- *> = 'S': compute condition numbers for selected eigenpairs
- *> specified by the array SELECT.
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is LOGICAL array, dimension (N)
- *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
- *> condition numbers are required. To select condition numbers
- *> for the j-th eigenpair, SELECT(j) must be set to .TRUE..
- *> If HOWMNY = 'A', SELECT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix T. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is COMPLEX*16 array, dimension (LDT,N)
- *> The upper triangular matrix T.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is COMPLEX*16 array, dimension (LDVL,M)
- *> If JOB = 'E' or 'B', VL must contain left eigenvectors of T
- *> (or of any Q*T*Q**H with Q unitary), corresponding to the
- *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
- *> must be stored in consecutive columns of VL, as returned by
- *> ZHSEIN or ZTREVC.
- *> If JOB = 'V', VL is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the array VL.
- *> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[in] VR
- *> \verbatim
- *> VR is COMPLEX*16 array, dimension (LDVR,M)
- *> If JOB = 'E' or 'B', VR must contain right eigenvectors of T
- *> (or of any Q*T*Q**H with Q unitary), corresponding to the
- *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
- *> must be stored in consecutive columns of VR, as returned by
- *> ZHSEIN or ZTREVC.
- *> If JOB = 'V', VR is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the array VR.
- *> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (MM)
- *> If JOB = 'E' or 'B', the reciprocal condition numbers of the
- *> selected eigenvalues, stored in consecutive elements of the
- *> array. Thus S(j), SEP(j), and the j-th columns of VL and VR
- *> all correspond to the same eigenpair (but not in general the
- *> j-th eigenpair, unless all eigenpairs are selected).
- *> If JOB = 'V', S is not referenced.
- *> \endverbatim
- *>
- *> \param[out] SEP
- *> \verbatim
- *> SEP is DOUBLE PRECISION array, dimension (MM)
- *> If JOB = 'V' or 'B', the estimated reciprocal condition
- *> numbers of the selected eigenvectors, stored in consecutive
- *> elements of the array.
- *> If JOB = 'E', SEP is not referenced.
- *> \endverbatim
- *>
- *> \param[in] MM
- *> \verbatim
- *> MM is INTEGER
- *> The number of elements in the arrays S (if JOB = 'E' or 'B')
- *> and/or SEP (if JOB = 'V' or 'B'). MM >= M.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The number of elements of the arrays S and/or SEP actually
- *> used to store the estimated condition numbers.
- *> If HOWMNY = 'A', M is set to N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LDWORK,N+6)
- *> If JOB = 'E', WORK is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK.
- *> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> If JOB = 'E', RWORK is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The reciprocal of the condition number of an eigenvalue lambda is
- *> defined as
- *>
- *> S(lambda) = |v**H*u| / (norm(u)*norm(v))
- *>
- *> where u and v are the right and left eigenvectors of T corresponding
- *> to lambda; v**H denotes the conjugate transpose of v, and norm(u)
- *> denotes the Euclidean norm. These reciprocal condition numbers always
- *> lie between zero (very badly conditioned) and one (very well
- *> conditioned). If n = 1, S(lambda) is defined to be 1.
- *>
- *> An approximate error bound for a computed eigenvalue W(i) is given by
- *>
- *> EPS * norm(T) / S(i)
- *>
- *> where EPS is the machine precision.
- *>
- *> The reciprocal of the condition number of the right eigenvector u
- *> corresponding to lambda is defined as follows. Suppose
- *>
- *> T = ( lambda c )
- *> ( 0 T22 )
- *>
- *> Then the reciprocal condition number is
- *>
- *> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
- *>
- *> where sigma-min denotes the smallest singular value. We approximate
- *> the smallest singular value by the reciprocal of an estimate of the
- *> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
- *> defined to be abs(T(1,1)).
- *>
- *> An approximate error bound for a computed right eigenvector VR(i)
- *> is given by
- *>
- *> EPS * norm(T) / SEP(i)
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
- $ LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER HOWMNY, JOB
- INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- LOGICAL SELECT( * )
- DOUBLE PRECISION RWORK( * ), S( * ), SEP( * )
- COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
- $ WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL SOMCON, WANTBH, WANTS, WANTSP
- CHARACTER NORMIN
- INTEGER I, IERR, IX, J, K, KASE, KS
- DOUBLE PRECISION BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
- $ XNORM
- COMPLEX*16 CDUM, PROD
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- COMPLEX*16 DUMMY( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IZAMAX
- DOUBLE PRECISION DLAMCH, DZNRM2
- COMPLEX*16 ZDOTC
- EXTERNAL LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC,
- $ DLABAD
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DIMAG, MAX
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- WANTBH = LSAME( JOB, 'B' )
- WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
- WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
- *
- SOMCON = LSAME( HOWMNY, 'S' )
- *
- * Set M to the number of eigenpairs for which condition numbers are
- * to be computed.
- *
- IF( SOMCON ) THEN
- M = 0
- DO 10 J = 1, N
- IF( SELECT( J ) )
- $ M = M + 1
- 10 CONTINUE
- ELSE
- M = N
- END IF
- *
- INFO = 0
- IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
- INFO = -10
- ELSE IF( MM.LT.M ) THEN
- INFO = -13
- ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
- INFO = -16
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZTRSNA', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( SOMCON ) THEN
- IF( .NOT.SELECT( 1 ) )
- $ RETURN
- END IF
- IF( WANTS )
- $ S( 1 ) = ONE
- IF( WANTSP )
- $ SEP( 1 ) = ABS( T( 1, 1 ) )
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- *
- KS = 1
- DO 50 K = 1, N
- *
- IF( SOMCON ) THEN
- IF( .NOT.SELECT( K ) )
- $ GO TO 50
- END IF
- *
- IF( WANTS ) THEN
- *
- * Compute the reciprocal condition number of the k-th
- * eigenvalue.
- *
- PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
- RNRM = DZNRM2( N, VR( 1, KS ), 1 )
- LNRM = DZNRM2( N, VL( 1, KS ), 1 )
- S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
- *
- END IF
- *
- IF( WANTSP ) THEN
- *
- * Estimate the reciprocal condition number of the k-th
- * eigenvector.
- *
- * Copy the matrix T to the array WORK and swap the k-th
- * diagonal element to the (1,1) position.
- *
- CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
- CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
- *
- * Form C = T22 - lambda*I in WORK(2:N,2:N).
- *
- DO 20 I = 2, N
- WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
- 20 CONTINUE
- *
- * Estimate a lower bound for the 1-norm of inv(C**H). The 1st
- * and (N+1)th columns of WORK are used to store work vectors.
- *
- SEP( KS ) = ZERO
- EST = ZERO
- KASE = 0
- NORMIN = 'N'
- 30 CONTINUE
- CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
- *
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- *
- * Solve C**H*x = scale*b
- *
- CALL ZLATRS( 'Upper', 'Conjugate transpose',
- $ 'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
- $ LDWORK, WORK, SCALE, RWORK, IERR )
- ELSE
- *
- * Solve C*x = scale*b
- *
- CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
- $ NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
- $ SCALE, RWORK, IERR )
- END IF
- NORMIN = 'Y'
- IF( SCALE.NE.ONE ) THEN
- *
- * Multiply by 1/SCALE if doing so will not cause
- * overflow.
- *
- IX = IZAMAX( N-1, WORK, 1 )
- XNORM = CABS1( WORK( IX, 1 ) )
- IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
- $ GO TO 40
- CALL ZDRSCL( N, SCALE, WORK, 1 )
- END IF
- GO TO 30
- END IF
- *
- SEP( KS ) = ONE / MAX( EST, SMLNUM )
- END IF
- *
- 40 CONTINUE
- KS = KS + 1
- 50 CONTINUE
- RETURN
- *
- * End of ZTRSNA
- *
- END
|