|
- *> \brief \b ZTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZTGEX2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgex2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgex2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgex2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
- * LDZ, J1, INFO )
- *
- * .. Scalar Arguments ..
- * LOGICAL WANTQ, WANTZ
- * INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
- *> in an upper triangular matrix pair (A, B) by an unitary equivalence
- *> transformation.
- *>
- *> (A, B) must be in generalized Schur canonical form, that is, A and
- *> B are both upper triangular.
- *>
- *> Optionally, the matrices Q and Z of generalized Schur vectors are
- *> updated.
- *>
- *> Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
- *> Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTQ
- *> \verbatim
- *> WANTQ is LOGICAL
- *> .TRUE. : update the left transformation matrix Q;
- *> .FALSE.: do not update Q.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> .TRUE. : update the right transformation matrix Z;
- *> .FALSE.: do not update Z.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimensions (LDA,N)
- *> On entry, the matrix A in the pair (A, B).
- *> On exit, the updated matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimensions (LDB,N)
- *> On entry, the matrix B in the pair (A, B).
- *> On exit, the updated matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDQ,N)
- *> If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
- *> the updated matrix Q.
- *> Not referenced if WANTQ = .FALSE..
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= 1;
- *> If WANTQ = .TRUE., LDQ >= N.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDZ,N)
- *> If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
- *> the updated matrix Z.
- *> Not referenced if WANTZ = .FALSE..
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1;
- *> If WANTZ = .TRUE., LDZ >= N.
- *> \endverbatim
- *>
- *> \param[in] J1
- *> \verbatim
- *> J1 is INTEGER
- *> The index to the first block (A11, B11).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> =0: Successful exit.
- *> =1: The transformed matrix pair (A, B) would be too far
- *> from generalized Schur form; the problem is ill-
- *> conditioned.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16GEauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> In the current code both weak and strong stability tests are
- *> performed. The user can omit the strong stability test by changing
- *> the internal logical parameter WANDS to .FALSE.. See ref. [2] for
- *> details.
- *
- *> \par Contributors:
- * ==================
- *>
- *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
- *> Umea University, S-901 87 Umea, Sweden.
- *
- *> \par References:
- * ================
- *>
- *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
- *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
- *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
- *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
- *> \n
- *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
- *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
- *> Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
- *> Department of Computing Science, Umea University, S-901 87 Umea,
- *> Sweden, 1994. Also as LAPACK Working Note 87. To appear in
- *> Numerical Algorithms, 1996.
- *>
- * =====================================================================
- SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
- $ LDZ, J1, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL WANTQ, WANTZ
- INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- $ Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION TWENTY
- PARAMETER ( TWENTY = 2.0D+1 )
- INTEGER LDST
- PARAMETER ( LDST = 2 )
- LOGICAL WANDS
- PARAMETER ( WANDS = .TRUE. )
- * ..
- * .. Local Scalars ..
- LOGICAL STRONG, WEAK
- INTEGER I, M
- DOUBLE PRECISION CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SUM,
- $ THRESHA, THRESHB
- COMPLEX*16 CDUM, F, G, SQ, SZ
- * ..
- * .. Local Arrays ..
- COMPLEX*16 S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLACPY, ZLARTG, ZLASSQ, ZROT
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCONJG, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- *
- * Quick return if possible
- *
- IF( N.LE.1 )
- $ RETURN
- *
- M = LDST
- WEAK = .FALSE.
- STRONG = .FALSE.
- *
- * Make a local copy of selected block in (A, B)
- *
- CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
- CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
- *
- * Compute the threshold for testing the acceptance of swapping.
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- SCALE = DBLE( CZERO )
- SUM = DBLE( CONE )
- CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
- CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
- CALL ZLASSQ( M*M, WORK, 1, SCALE, SUM )
- SA = SCALE*SQRT( SUM )
- SCALE = DBLE( CZERO )
- SUM = DBLE( CONE )
- CALL ZLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM )
- SB = SCALE*SQRT( SUM )
- *
- * THRES has been changed from
- * THRESH = MAX( TEN*EPS*SA, SMLNUM )
- * to
- * THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
- * on 04/01/10.
- * "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
- * Jim Demmel and Guillaume Revy. See forum post 1783.
- *
- THRESHA = MAX( TWENTY*EPS*SA, SMLNUM )
- THRESHB = MAX( TWENTY*EPS*SB, SMLNUM )
- *
- * Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
- * using Givens rotations and perform the swap tentatively.
- *
- F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
- G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
- SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
- SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
- CALL ZLARTG( G, F, CZ, SZ, CDUM )
- SZ = -SZ
- CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
- CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
- IF( SA.GE.SB ) THEN
- CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
- ELSE
- CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
- END IF
- CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
- CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
- *
- * Weak stability test: |S21| <= O(EPS F-norm((A)))
- * and |T21| <= O(EPS F-norm((B)))
- *
- WEAK = ABS( S( 2, 1 ) ).LE.THRESHA .AND.
- $ ABS( T( 2, 1 ) ).LE.THRESHB
- IF( .NOT.WEAK )
- $ GO TO 20
- *
- IF( WANDS ) THEN
- *
- * Strong stability test:
- * F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
- * and
- * F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
- *
- CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
- CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
- CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
- CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
- CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
- CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
- DO 10 I = 1, 2
- WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
- WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
- WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
- WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
- 10 CONTINUE
- SCALE = DBLE( CZERO )
- SUM = DBLE( CONE )
- CALL ZLASSQ( M*M, WORK, 1, SCALE, SUM )
- SA = SCALE*SQRT( SUM )
- SCALE = DBLE( CZERO )
- SUM = DBLE( CONE )
- CALL ZLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM )
- SB = SCALE*SQRT( SUM )
- STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
- IF( .NOT.STRONG )
- $ GO TO 20
- END IF
- *
- * If the swap is accepted ("weakly" and "strongly"), apply the
- * equivalence transformations to the original matrix pair (A,B)
- *
- CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
- $ DCONJG( SZ ) )
- CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
- $ DCONJG( SZ ) )
- CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
- CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
- *
- * Set N1 by N2 (2,1) blocks to 0
- *
- A( J1+1, J1 ) = CZERO
- B( J1+1, J1 ) = CZERO
- *
- * Accumulate transformations into Q and Z if requested.
- *
- IF( WANTZ )
- $ CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
- $ DCONJG( SZ ) )
- IF( WANTQ )
- $ CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
- $ DCONJG( SQ ) )
- *
- * Exit with INFO = 0 if swap was successfully performed.
- *
- RETURN
- *
- * Exit with INFO = 1 if swap was rejected.
- *
- 20 CONTINUE
- INFO = 1
- RETURN
- *
- * End of ZTGEX2
- *
- END
|