|
- *> \brief \b ZTFTRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZTFTRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztftri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztftri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztftri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANSR, UPLO, DIAG
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( 0: * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTFTRI computes the inverse of a triangular matrix A stored in RFP
- *> format.
- *>
- *> This is a Level 3 BLAS version of the algorithm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANSR
- *> \verbatim
- *> TRANSR is CHARACTER*1
- *> = 'N': The Normal TRANSR of RFP A is stored;
- *> = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': A is upper triangular;
- *> = 'L': A is lower triangular.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> = 'N': A is non-unit triangular;
- *> = 'U': A is unit triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
- *> On entry, the triangular matrix A in RFP format. RFP format
- *> is described by TRANSR, UPLO, and N as follows: If TRANSR =
- *> 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
- *> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
- *> the Conjugate-transpose of RFP A as defined when
- *> TRANSR = 'N'. The contents of RFP A are defined by UPLO as
- *> follows: If UPLO = 'U' the RFP A contains the nt elements of
- *> upper packed A; If UPLO = 'L' the RFP A contains the nt
- *> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
- *> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
- *> even and N is odd. See the Note below for more details.
- *>
- *> On exit, the (triangular) inverse of the original matrix, in
- *> the same storage format.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
- *> matrix is singular and its inverse can not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> We first consider Standard Packed Format when N is even.
- *> We give an example where N = 6.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 05 00
- *> 11 12 13 14 15 10 11
- *> 22 23 24 25 20 21 22
- *> 33 34 35 30 31 32 33
- *> 44 45 40 41 42 43 44
- *> 55 50 51 52 53 54 55
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
- *> conjugate-transpose of the first three columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
- *> conjugate-transpose of the last three columns of AP lower.
- *> To denote conjugate we place -- above the element. This covers the
- *> case N even and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> -- -- --
- *> 03 04 05 33 43 53
- *> -- --
- *> 13 14 15 00 44 54
- *> --
- *> 23 24 25 10 11 55
- *>
- *> 33 34 35 20 21 22
- *> --
- *> 00 44 45 30 31 32
- *> -- --
- *> 01 11 55 40 41 42
- *> -- -- --
- *> 02 12 22 50 51 52
- *>
- *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> -- -- -- -- -- -- -- -- -- --
- *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
- *> -- -- -- -- -- -- -- -- -- --
- *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
- *> -- -- -- -- -- -- -- -- -- --
- *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
- *>
- *>
- *> We next consider Standard Packed Format when N is odd.
- *> We give an example where N = 5.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 00
- *> 11 12 13 14 10 11
- *> 22 23 24 20 21 22
- *> 33 34 30 31 32 33
- *> 44 40 41 42 43 44
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
- *> conjugate-transpose of the first two columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
- *> conjugate-transpose of the last two columns of AP lower.
- *> To denote conjugate we place -- above the element. This covers the
- *> case N odd and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> -- --
- *> 02 03 04 00 33 43
- *> --
- *> 12 13 14 10 11 44
- *>
- *> 22 23 24 20 21 22
- *> --
- *> 00 33 34 30 31 32
- *> -- --
- *> 01 11 44 40 41 42
- *>
- *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> -- -- -- -- -- -- -- -- --
- *> 02 12 22 00 01 00 10 20 30 40 50
- *> -- -- -- -- -- -- -- -- --
- *> 03 13 23 33 11 33 11 21 31 41 51
- *> -- -- -- -- -- -- -- -- --
- *> 04 14 24 34 44 43 44 22 32 42 52
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANSR, UPLO, DIAG
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( 0: * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CONE
- PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, NISODD, NORMALTRANSR
- INTEGER N1, N2, K
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZTRMM, ZTRTRI
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MOD
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NORMALTRANSR = LSAME( TRANSR, 'N' )
- LOWER = LSAME( UPLO, 'L' )
- IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
- $ THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZTFTRI', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * If N is odd, set NISODD = .TRUE.
- * If N is even, set K = N/2 and NISODD = .FALSE.
- *
- IF( MOD( N, 2 ).EQ.0 ) THEN
- K = N / 2
- NISODD = .FALSE.
- ELSE
- NISODD = .TRUE.
- END IF
- *
- * Set N1 and N2 depending on LOWER
- *
- IF( LOWER ) THEN
- N2 = N / 2
- N1 = N - N2
- ELSE
- N1 = N / 2
- N2 = N - N1
- END IF
- *
- *
- * start execution: there are eight cases
- *
- IF( NISODD ) THEN
- *
- * N is odd
- *
- IF( NORMALTRANSR ) THEN
- *
- * N is odd and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
- * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
- * T1 -> a(0), T2 -> a(n), S -> a(n1)
- *
- CALL ZTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'L', 'N', DIAG, N2, N1, -CONE, A( 0 ),
- $ N, A( N1 ), N )
- CALL ZTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + N1
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'U', 'C', DIAG, N2, N1, CONE, A( N ), N,
- $ A( N1 ), N )
- *
- ELSE
- *
- * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
- * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
- * T1 -> a(n2), T2 -> a(n1), S -> a(0)
- *
- CALL ZTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'L', 'C', DIAG, N1, N2, -CONE, A( N2 ),
- $ N, A( 0 ), N )
- CALL ZTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + N1
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'U', 'N', DIAG, N1, N2, CONE, A( N1 ),
- $ N, A( 0 ), N )
- *
- END IF
- *
- ELSE
- *
- * N is odd and TRANSR = 'C'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, TRANSPOSE and N is odd
- * T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
- *
- CALL ZTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'U', 'N', DIAG, N1, N2, -CONE, A( 0 ),
- $ N1, A( N1*N1 ), N1 )
- CALL ZTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + N1
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'L', 'C', DIAG, N1, N2, CONE, A( 1 ),
- $ N1, A( N1*N1 ), N1 )
- *
- ELSE
- *
- * SRPA for UPPER, TRANSPOSE and N is odd
- * T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
- *
- CALL ZTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'U', 'C', DIAG, N2, N1, -CONE,
- $ A( N2*N2 ), N2, A( 0 ), N2 )
- CALL ZTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + N1
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'L', 'N', DIAG, N2, N1, CONE,
- $ A( N1*N2 ), N2, A( 0 ), N2 )
- END IF
- *
- END IF
- *
- ELSE
- *
- * N is even
- *
- IF( NORMALTRANSR ) THEN
- *
- * N is even and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
- * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
- * T1 -> a(1), T2 -> a(0), S -> a(k+1)
- *
- CALL ZTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'L', 'N', DIAG, K, K, -CONE, A( 1 ),
- $ N+1, A( K+1 ), N+1 )
- CALL ZTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + K
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'U', 'C', DIAG, K, K, CONE, A( 0 ), N+1,
- $ A( K+1 ), N+1 )
- *
- ELSE
- *
- * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
- * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
- * T1 -> a(k+1), T2 -> a(k), S -> a(0)
- *
- CALL ZTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'L', 'C', DIAG, K, K, -CONE, A( K+1 ),
- $ N+1, A( 0 ), N+1 )
- CALL ZTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + K
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'U', 'N', DIAG, K, K, CONE, A( K ), N+1,
- $ A( 0 ), N+1 )
- END IF
- ELSE
- *
- * N is even and TRANSR = 'C'
- *
- IF( LOWER ) THEN
- *
- * SRPA for LOWER, TRANSPOSE and N is even (see paper)
- * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
- * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
- *
- CALL ZTRTRI( 'U', DIAG, K, A( K ), K, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'U', 'N', DIAG, K, K, -CONE, A( K ), K,
- $ A( K*( K+1 ) ), K )
- CALL ZTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + K
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'L', 'C', DIAG, K, K, CONE, A( 0 ), K,
- $ A( K*( K+1 ) ), K )
- ELSE
- *
- * SRPA for UPPER, TRANSPOSE and N is even (see paper)
- * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
- * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
- *
- CALL ZTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'R', 'U', 'C', DIAG, K, K, -CONE,
- $ A( K*( K+1 ) ), K, A( 0 ), K )
- CALL ZTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
- IF( INFO.GT.0 )
- $ INFO = INFO + K
- IF( INFO.GT.0 )
- $ RETURN
- CALL ZTRMM( 'L', 'L', 'N', DIAG, K, K, CONE, A( K*K ), K,
- $ A( 0 ), K )
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of ZTFTRI
- *
- END
|