|
- *> \brief \b ZSYRFSX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZSYRFSX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyrfsx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyrfsx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyrfsx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
- * S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
- * ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
- * WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO, EQUED
- * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
- * $ N_ERR_BNDS
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- * $ X( LDX, * ), WORK( * )
- * DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
- * $ ERR_BNDS_NORM( NRHS, * ),
- * $ ERR_BNDS_COMP( NRHS, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSYRFSX improves the computed solution to a system of linear
- *> equations when the coefficient matrix is symmetric indefinite, and
- *> provides error bounds and backward error estimates for the
- *> solution. In addition to normwise error bound, the code provides
- *> maximum componentwise error bound if possible. See comments for
- *> ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
- *>
- *> The original system of linear equations may have been equilibrated
- *> before calling this routine, as described by arguments EQUED and S
- *> below. In this case, the solution and error bounds returned are
- *> for the original unequilibrated system.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> Some optional parameters are bundled in the PARAMS array. These
- *> settings determine how refinement is performed, but often the
- *> defaults are acceptable. If the defaults are acceptable, users
- *> can pass NPARAMS = 0 which prevents the source code from accessing
- *> the PARAMS argument.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] EQUED
- *> \verbatim
- *> EQUED is CHARACTER*1
- *> Specifies the form of equilibration that was done to A
- *> before calling this routine. This is needed to compute
- *> the solution and error bounds correctly.
- *> = 'N': No equilibration
- *> = 'Y': Both row and column equilibration, i.e., A has been
- *> replaced by diag(S) * A * diag(S).
- *> The right hand side B has been changed accordingly.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
- *> upper triangular part of A contains the upper triangular
- *> part of the matrix A, and the strictly lower triangular
- *> part of A is not referenced. If UPLO = 'L', the leading
- *> N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is COMPLEX*16 array, dimension (LDAF,N)
- *> The factored form of the matrix A. AF contains the block
- *> diagonal matrix D and the multipliers used to obtain the
- *> factor U or L from the factorization A = U*D*U**T or A =
- *> L*D*L**T as computed by ZSYTRF.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by ZSYTRF.
- *> \endverbatim
- *>
- *> \param[in,out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> The scale factors for A. If EQUED = 'Y', A is multiplied on
- *> the left and right by diag(S). S is an input argument if FACT =
- *> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
- *> = 'Y', each element of S must be positive. If S is output, each
- *> element of S is a power of the radix. If S is input, each element
- *> of S should be a power of the radix to ensure a reliable solution
- *> and error estimates. Scaling by powers of the radix does not cause
- *> rounding errors unless the result underflows or overflows.
- *> Rounding errors during scaling lead to refining with a matrix that
- *> is not equivalent to the input matrix, producing error estimates
- *> that may not be reliable.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> The right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,NRHS)
- *> On entry, the solution matrix X, as computed by ZGETRS.
- *> On exit, the improved solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> Reciprocal scaled condition number. This is an estimate of the
- *> reciprocal Skeel condition number of the matrix A after
- *> equilibration (if done). If this is less than the machine
- *> precision (in particular, if it is zero), the matrix is singular
- *> to working precision. Note that the error may still be small even
- *> if this number is very small and the matrix appears ill-
- *> conditioned.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> Componentwise relative backward error. This is the
- *> componentwise relative backward error of each solution vector X(j)
- *> (i.e., the smallest relative change in any element of A or B that
- *> makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[in] N_ERR_BNDS
- *> \verbatim
- *> N_ERR_BNDS is INTEGER
- *> Number of error bounds to return for each right hand side
- *> and each type (normwise or componentwise). See ERR_BNDS_NORM and
- *> ERR_BNDS_COMP below.
- *> \endverbatim
- *>
- *> \param[out] ERR_BNDS_NORM
- *> \verbatim
- *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
- *> For each right-hand side, this array contains information about
- *> various error bounds and condition numbers corresponding to the
- *> normwise relative error, which is defined as follows:
- *>
- *> Normwise relative error in the ith solution vector:
- *> max_j (abs(XTRUE(j,i) - X(j,i)))
- *> ------------------------------
- *> max_j abs(X(j,i))
- *>
- *> The array is indexed by the type of error information as described
- *> below. There currently are up to three pieces of information
- *> returned.
- *>
- *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
- *> right-hand side.
- *>
- *> The second index in ERR_BNDS_NORM(:,err) contains the following
- *> three fields:
- *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
- *> reciprocal condition number is less than the threshold
- *> sqrt(n) * dlamch('Epsilon').
- *>
- *> err = 2 "Guaranteed" error bound: The estimated forward error,
- *> almost certainly within a factor of 10 of the true error
- *> so long as the next entry is greater than the threshold
- *> sqrt(n) * dlamch('Epsilon'). This error bound should only
- *> be trusted if the previous boolean is true.
- *>
- *> err = 3 Reciprocal condition number: Estimated normwise
- *> reciprocal condition number. Compared with the threshold
- *> sqrt(n) * dlamch('Epsilon') to determine if the error
- *> estimate is "guaranteed". These reciprocal condition
- *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
- *> appropriately scaled matrix Z.
- *> Let Z = S*A, where S scales each row by a power of the
- *> radix so all absolute row sums of Z are approximately 1.
- *>
- *> See Lapack Working Note 165 for further details and extra
- *> cautions.
- *> \endverbatim
- *>
- *> \param[out] ERR_BNDS_COMP
- *> \verbatim
- *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
- *> For each right-hand side, this array contains information about
- *> various error bounds and condition numbers corresponding to the
- *> componentwise relative error, which is defined as follows:
- *>
- *> Componentwise relative error in the ith solution vector:
- *> abs(XTRUE(j,i) - X(j,i))
- *> max_j ----------------------
- *> abs(X(j,i))
- *>
- *> The array is indexed by the right-hand side i (on which the
- *> componentwise relative error depends), and the type of error
- *> information as described below. There currently are up to three
- *> pieces of information returned for each right-hand side. If
- *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
- *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
- *> the first (:,N_ERR_BNDS) entries are returned.
- *>
- *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
- *> right-hand side.
- *>
- *> The second index in ERR_BNDS_COMP(:,err) contains the following
- *> three fields:
- *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
- *> reciprocal condition number is less than the threshold
- *> sqrt(n) * dlamch('Epsilon').
- *>
- *> err = 2 "Guaranteed" error bound: The estimated forward error,
- *> almost certainly within a factor of 10 of the true error
- *> so long as the next entry is greater than the threshold
- *> sqrt(n) * dlamch('Epsilon'). This error bound should only
- *> be trusted if the previous boolean is true.
- *>
- *> err = 3 Reciprocal condition number: Estimated componentwise
- *> reciprocal condition number. Compared with the threshold
- *> sqrt(n) * dlamch('Epsilon') to determine if the error
- *> estimate is "guaranteed". These reciprocal condition
- *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
- *> appropriately scaled matrix Z.
- *> Let Z = S*(A*diag(x)), where x is the solution for the
- *> current right-hand side and S scales each row of
- *> A*diag(x) by a power of the radix so all absolute row
- *> sums of Z are approximately 1.
- *>
- *> See Lapack Working Note 165 for further details and extra
- *> cautions.
- *> \endverbatim
- *>
- *> \param[in] NPARAMS
- *> \verbatim
- *> NPARAMS is INTEGER
- *> Specifies the number of parameters set in PARAMS. If <= 0, the
- *> PARAMS array is never referenced and default values are used.
- *> \endverbatim
- *>
- *> \param[in,out] PARAMS
- *> \verbatim
- *> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
- *> Specifies algorithm parameters. If an entry is < 0.0, then
- *> that entry will be filled with default value used for that
- *> parameter. Only positions up to NPARAMS are accessed; defaults
- *> are used for higher-numbered parameters.
- *>
- *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
- *> refinement or not.
- *> Default: 1.0D+0
- *> = 0.0: No refinement is performed, and no error bounds are
- *> computed.
- *> = 1.0: Use the double-precision refinement algorithm,
- *> possibly with doubled-single computations if the
- *> compilation environment does not support DOUBLE
- *> PRECISION.
- *> (other values are reserved for future use)
- *>
- *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
- *> computations allowed for refinement.
- *> Default: 10
- *> Aggressive: Set to 100 to permit convergence using approximate
- *> factorizations or factorizations other than LU. If
- *> the factorization uses a technique other than
- *> Gaussian elimination, the guarantees in
- *> err_bnds_norm and err_bnds_comp may no longer be
- *> trustworthy.
- *>
- *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
- *> will attempt to find a solution with small componentwise
- *> relative error in the double-precision algorithm. Positive
- *> is true, 0.0 is false.
- *> Default: 1.0 (attempt componentwise convergence)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit. The solution to every right-hand side is
- *> guaranteed.
- *> < 0: If INFO = -i, the i-th argument had an illegal value
- *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly singular, so
- *> the solution and error bounds could not be computed. RCOND = 0
- *> is returned.
- *> = N+J: The solution corresponding to the Jth right-hand side is
- *> not guaranteed. The solutions corresponding to other right-
- *> hand sides K with K > J may not be guaranteed as well, but
- *> only the first such right-hand side is reported. If a small
- *> componentwise error is not requested (PARAMS(3) = 0.0) then
- *> the Jth right-hand side is the first with a normwise error
- *> bound that is not guaranteed (the smallest J such
- *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
- *> the Jth right-hand side is the first with either a normwise or
- *> componentwise error bound that is not guaranteed (the smallest
- *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
- *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
- *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
- *> about all of the right-hand sides check ERR_BNDS_NORM or
- *> ERR_BNDS_COMP.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16SYcomputational
- *
- * =====================================================================
- SUBROUTINE ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
- $ S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
- $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
- $ WORK, RWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO, EQUED
- INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
- $ N_ERR_BNDS
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- $ X( LDX, * ), WORK( * )
- DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
- $ ERR_BNDS_NORM( NRHS, * ),
- $ ERR_BNDS_COMP( NRHS, * )
- * ..
- *
- * ==================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT
- DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
- DOUBLE PRECISION DZTHRESH_DEFAULT
- PARAMETER ( ITREF_DEFAULT = 1.0D+0 )
- PARAMETER ( ITHRESH_DEFAULT = 10.0D+0 )
- PARAMETER ( COMPONENTWISE_DEFAULT = 1.0D+0 )
- PARAMETER ( RTHRESH_DEFAULT = 0.5D+0 )
- PARAMETER ( DZTHRESH_DEFAULT = 0.25D+0 )
- INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
- $ LA_LINRX_CWISE_I
- PARAMETER ( LA_LINRX_ITREF_I = 1,
- $ LA_LINRX_ITHRESH_I = 2 )
- PARAMETER ( LA_LINRX_CWISE_I = 3 )
- INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
- $ LA_LINRX_RCOND_I
- PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
- PARAMETER ( LA_LINRX_RCOND_I = 3 )
- * ..
- * .. Local Scalars ..
- CHARACTER(1) NORM
- LOGICAL RCEQU
- INTEGER J, PREC_TYPE, REF_TYPE
- INTEGER N_NORMS
- DOUBLE PRECISION ANORM, RCOND_TMP
- DOUBLE PRECISION ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
- LOGICAL IGNORE_CWISE
- INTEGER ITHRESH
- DOUBLE PRECISION RTHRESH, UNSTABLE_THRESH
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZSYCON, ZLA_SYRFSX_EXTENDED
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT, TRANSFER
- * ..
- * .. External Functions ..
- EXTERNAL LSAME, ILAPREC
- EXTERNAL DLAMCH, ZLANSY, ZLA_SYRCOND_X, ZLA_SYRCOND_C
- DOUBLE PRECISION DLAMCH, ZLANSY, ZLA_SYRCOND_X, ZLA_SYRCOND_C
- LOGICAL LSAME
- INTEGER ILAPREC
- * ..
- * .. Executable Statements ..
- *
- * Check the input parameters.
- *
- INFO = 0
- REF_TYPE = INT( ITREF_DEFAULT )
- IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
- IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
- PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
- ELSE
- REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
- END IF
- END IF
- *
- * Set default parameters.
- *
- ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
- ITHRESH = INT( ITHRESH_DEFAULT )
- RTHRESH = RTHRESH_DEFAULT
- UNSTABLE_THRESH = DZTHRESH_DEFAULT
- IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
- *
- IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
- IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
- PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
- ELSE
- ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
- END IF
- END IF
- IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
- IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
- IF ( IGNORE_CWISE ) THEN
- PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
- ELSE
- PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
- END IF
- ELSE
- IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
- END IF
- END IF
- IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
- N_NORMS = 0
- ELSE IF ( IGNORE_CWISE ) THEN
- N_NORMS = 1
- ELSE
- N_NORMS = 2
- END IF
- *
- RCEQU = LSAME( EQUED, 'Y' )
- *
- * Test input parameters.
- *
- IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -12
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -14
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSYRFSX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
- RCOND = 1.0D+0
- DO J = 1, NRHS
- BERR( J ) = 0.0D+0
- IF ( N_ERR_BNDS .GE. 1 ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
- END IF
- IF ( N_ERR_BNDS .GE. 2 ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
- END IF
- IF ( N_ERR_BNDS .GE. 3 ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
- END IF
- END DO
- RETURN
- END IF
- *
- * Default to failure.
- *
- RCOND = 0.0D+0
- DO J = 1, NRHS
- BERR( J ) = 1.0D+0
- IF ( N_ERR_BNDS .GE. 1 ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
- END IF
- IF ( N_ERR_BNDS .GE. 2 ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
- END IF
- IF ( N_ERR_BNDS .GE. 3 ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
- END IF
- END DO
- *
- * Compute the norm of A and the reciprocal of the condition
- * number of A.
- *
- NORM = 'I'
- ANORM = ZLANSY( NORM, UPLO, N, A, LDA, RWORK )
- CALL ZSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
- $ INFO )
- *
- * Perform refinement on each right-hand side
- *
- IF ( REF_TYPE .NE. 0 ) THEN
-
- PREC_TYPE = ILAPREC( 'E' )
-
- CALL ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N,
- $ NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
- $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
- $ WORK, RWORK, WORK(N+1),
- $ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
- $ ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
- $ INFO )
- END IF
-
- ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
- IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
- *
- * Compute scaled normwise condition number cond(A*C).
- *
- IF ( RCEQU ) THEN
- RCOND_TMP = ZLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
- $ S, .TRUE., INFO, WORK, RWORK )
- ELSE
- RCOND_TMP = ZLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
- $ S, .FALSE., INFO, WORK, RWORK )
- END IF
- DO J = 1, NRHS
- *
- * Cap the error at 1.0.
- *
- IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
- $ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
- $ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
- *
- * Threshold the error (see LAWN).
- *
- IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
- ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
- IF ( INFO .LE. N ) INFO = N + J
- ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
- $ THEN
- ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
- ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
- END IF
- *
- * Save the condition number.
- *
- IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
- ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
- END IF
- END DO
- END IF
-
- IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
- *
- * Compute componentwise condition number cond(A*diag(Y(:,J))) for
- * each right-hand side using the current solution as an estimate of
- * the true solution. If the componentwise error estimate is too
- * large, then the solution is a lousy estimate of truth and the
- * estimated RCOND may be too optimistic. To avoid misleading users,
- * the inverse condition number is set to 0.0 when the estimated
- * cwise error is at least CWISE_WRONG.
- *
- CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
- DO J = 1, NRHS
- IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
- $ THEN
- RCOND_TMP = ZLA_SYRCOND_X( UPLO, N, A, LDA, AF, LDAF,
- $ IPIV, X(1,J), INFO, WORK, RWORK )
- ELSE
- RCOND_TMP = 0.0D+0
- END IF
- *
- * Cap the error at 1.0.
- *
- IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
- $ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
- $ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
-
- *
- * Threshold the error (see LAWN).
- *
- IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
- ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
- ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
- IF (.NOT. IGNORE_CWISE
- $ .AND. INFO.LT.N + J ) INFO = N + J
- ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
- $ .LT. ERR_LBND ) THEN
- ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
- ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
- END IF
- *
- * Save the condition number.
- *
- IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
- ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
- END IF
-
- END DO
- END IF
- *
- RETURN
- *
- * End of ZSYRFSX
- *
- END
|