|
- *> \brief \b ZSYR performs the symmetric rank-1 update of a complex symmetric matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZSYR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INCX, LDA, N
- * COMPLEX*16 ALPHA
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSYR performs the symmetric rank 1 operation
- *>
- *> A := alpha*x*x**H + A,
- *>
- *> where alpha is a complex scalar, x is an n element vector and A is an
- *> n by n symmetric matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the array A is to be referenced as
- *> follows:
- *>
- *> UPLO = 'U' or 'u' Only the upper triangular part of A
- *> is to be referenced.
- *>
- *> UPLO = 'L' or 'l' Only the lower triangular part of A
- *> is to be referenced.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX*16
- *> On entry, ALPHA specifies the scalar alpha.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension at least
- *> ( 1 + ( N - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the N-
- *> element vector x.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension ( LDA, N )
- *> Before entry, with UPLO = 'U' or 'u', the leading n by n
- *> upper triangular part of the array A must contain the upper
- *> triangular part of the symmetric matrix and the strictly
- *> lower triangular part of A is not referenced. On exit, the
- *> upper triangular part of the array A is overwritten by the
- *> upper triangular part of the updated matrix.
- *> Before entry, with UPLO = 'L' or 'l', the leading n by n
- *> lower triangular part of the array A must contain the lower
- *> triangular part of the symmetric matrix and the strictly
- *> upper triangular part of A is not referenced. On exit, the
- *> lower triangular part of the array A is overwritten by the
- *> lower triangular part of the updated matrix.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> max( 1, N ).
- *> Unchanged on exit.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16SYauxiliary
- *
- * =====================================================================
- SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INCX, LDA, N
- COMPLEX*16 ALPHA
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, IX, J, JX, KX
- COMPLEX*16 TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = 1
- ELSE IF( N.LT.0 ) THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 ) THEN
- INFO = 5
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = 7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSYR ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
- $ RETURN
- *
- * Set the start point in X if the increment is not unity.
- *
- IF( INCX.LE.0 ) THEN
- KX = 1 - ( N-1 )*INCX
- ELSE IF( INCX.NE.1 ) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through the triangular part
- * of A.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Form A when A is stored in upper triangle.
- *
- IF( INCX.EQ.1 ) THEN
- DO 20 J = 1, N
- IF( X( J ).NE.ZERO ) THEN
- TEMP = ALPHA*X( J )
- DO 10 I = 1, J
- A( I, J ) = A( I, J ) + X( I )*TEMP
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1, N
- IF( X( JX ).NE.ZERO ) THEN
- TEMP = ALPHA*X( JX )
- IX = KX
- DO 30 I = 1, J
- A( I, J ) = A( I, J ) + X( IX )*TEMP
- IX = IX + INCX
- 30 CONTINUE
- END IF
- JX = JX + INCX
- 40 CONTINUE
- END IF
- ELSE
- *
- * Form A when A is stored in lower triangle.
- *
- IF( INCX.EQ.1 ) THEN
- DO 60 J = 1, N
- IF( X( J ).NE.ZERO ) THEN
- TEMP = ALPHA*X( J )
- DO 50 I = J, N
- A( I, J ) = A( I, J ) + X( I )*TEMP
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1, N
- IF( X( JX ).NE.ZERO ) THEN
- TEMP = ALPHA*X( JX )
- IX = JX
- DO 70 I = J, N
- A( I, J ) = A( I, J ) + X( IX )*TEMP
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZSYR
- *
- END
|