|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed mat
- rix */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZSPMV + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspmv.f
- "> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspmv.f
- "> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspmv.f
- "> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INCX, INCY, N */
- /* COMPLEX*16 ALPHA, BETA */
- /* COMPLEX*16 AP( * ), X( * ), Y( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZSPMV performs the matrix-vector operation */
- /* > */
- /* > y := alpha*A*x + beta*y, */
- /* > */
- /* > where alpha and beta are scalars, x and y are n element vectors and */
- /* > A is an n by n symmetric matrix, supplied in packed form. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > On entry, UPLO specifies whether the upper or lower */
- /* > triangular part of the matrix A is supplied in the packed */
- /* > array AP as follows: */
- /* > */
- /* > UPLO = 'U' or 'u' The upper triangular part of A is */
- /* > supplied in AP. */
- /* > */
- /* > UPLO = 'L' or 'l' The lower triangular part of A is */
- /* > supplied in AP. */
- /* > */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > On entry, N specifies the order of the matrix A. */
- /* > N must be at least zero. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ALPHA */
- /* > \verbatim */
- /* > ALPHA is COMPLEX*16 */
- /* > On entry, ALPHA specifies the scalar alpha. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] AP */
- /* > \verbatim */
- /* > AP is COMPLEX*16 array, dimension at least */
- /* > ( ( N*( N + 1 ) )/2 ). */
- /* > Before entry, with UPLO = 'U' or 'u', the array AP must */
- /* > contain the upper triangular part of the symmetric matrix */
- /* > packed sequentially, column by column, so that AP( 1 ) */
- /* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
- /* > and a( 2, 2 ) respectively, and so on. */
- /* > Before entry, with UPLO = 'L' or 'l', the array AP must */
- /* > contain the lower triangular part of the symmetric matrix */
- /* > packed sequentially, column by column, so that AP( 1 ) */
- /* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
- /* > and a( 3, 1 ) respectively, and so on. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] X */
- /* > \verbatim */
- /* > X is COMPLEX*16 array, dimension at least */
- /* > ( 1 + ( N - 1 )*abs( INCX ) ). */
- /* > Before entry, the incremented array X must contain the N- */
- /* > element vector x. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] INCX */
- /* > \verbatim */
- /* > INCX is INTEGER */
- /* > On entry, INCX specifies the increment for the elements of */
- /* > X. INCX must not be zero. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] BETA */
- /* > \verbatim */
- /* > BETA is COMPLEX*16 */
- /* > On entry, BETA specifies the scalar beta. When BETA is */
- /* > supplied as zero then Y need not be set on input. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Y */
- /* > \verbatim */
- /* > Y is COMPLEX*16 array, dimension at least */
- /* > ( 1 + ( N - 1 )*abs( INCY ) ). */
- /* > Before entry, the incremented array Y must contain the n */
- /* > element vector y. On exit, Y is overwritten by the updated */
- /* > vector y. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] INCY */
- /* > \verbatim */
- /* > INCY is INTEGER */
- /* > On entry, INCY specifies the increment for the elements of */
- /* > Y. INCY must not be zero. */
- /* > Unchanged on exit. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void zspmv_(char *uplo, integer *n, doublecomplex *alpha,
- doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
- beta, doublecomplex *y, integer *incy)
- {
- /* System generated locals */
- integer i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Local variables */
- integer info;
- doublecomplex temp1, temp2;
- integer i__, j, k;
- extern logical lsame_(char *, char *);
- integer kk, ix, iy, jx, jy, kx, ky;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --y;
- --x;
- --ap;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 6;
- } else if (*incy == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZSPMV ", &info, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible. */
-
- if (*n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
- beta->i == 0.)) {
- return;
- }
-
- /* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
- /* Start the operations. In this version the elements of the array AP */
- /* are accessed sequentially with one pass through AP. */
-
- /* First form y := beta*y. */
-
- if (beta->r != 1. || beta->i != 0.) {
- if (*incy == 1) {
- if (beta->r == 0. && beta->i == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0., y[i__2].i = 0.;
- /* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- /* L20: */
- }
- }
- } else {
- iy = ky;
- if (beta->r == 0. && beta->i == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0., y[i__2].i = 0.;
- iy += *incy;
- /* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- iy += *incy;
- /* L40: */
- }
- }
- }
- }
- if (alpha->r == 0. && alpha->i == 0.) {
- return;
- }
- kk = 1;
- if (lsame_(uplo, "U")) {
-
- /* Form y when AP contains the upper triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- k = kk;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- i__3 = k;
- i__4 = i__;
- z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
- z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
- i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ++k;
- /* L50: */
- }
- i__2 = j;
- i__3 = j;
- i__4 = kk + j - 1;
- z__3.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__3.i =
- temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
- z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- kk += j;
- /* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- ix = kx;
- iy = ky;
- i__2 = kk + j - 2;
- for (k = kk; k <= i__2; ++k) {
- i__3 = iy;
- i__4 = iy;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- i__3 = k;
- i__4 = ix;
- z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
- z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
- i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ix += *incx;
- iy += *incy;
- /* L70: */
- }
- i__2 = jy;
- i__3 = jy;
- i__4 = kk + j - 1;
- z__3.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__3.i =
- temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
- z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jx += *incx;
- jy += *incy;
- kk += j;
- /* L80: */
- }
- }
- } else {
-
- /* Form y when AP contains the lower triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = j;
- i__3 = j;
- i__4 = kk;
- z__2.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__2.i =
- temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- k = kk + 1;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- i__3 = k;
- i__4 = i__;
- z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
- z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
- i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ++k;
- /* L90: */
- }
- i__2 = j;
- i__3 = j;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- kk += *n - j + 1;
- /* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = jy;
- i__3 = jy;
- i__4 = kk;
- z__2.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__2.i =
- temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- ix = jx;
- iy = jy;
- i__2 = kk + *n - j;
- for (k = kk + 1; k <= i__2; ++k) {
- ix += *incx;
- iy += *incy;
- i__3 = iy;
- i__4 = iy;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- i__3 = k;
- i__4 = ix;
- z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
- z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
- i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- /* L110: */
- }
- i__2 = jy;
- i__3 = jy;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jx += *incx;
- jy += *incy;
- kk += *n - j + 1;
- /* L120: */
- }
- }
- }
-
- return;
-
- /* End of ZSPMV */
-
- } /* zspmv_ */
|