|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by
- spttrf. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZPTTS2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptts2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptts2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptts2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB ) */
-
- /* INTEGER IUPLO, LDB, N, NRHS */
- /* DOUBLE PRECISION D( * ) */
- /* COMPLEX*16 B( LDB, * ), E( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZPTTS2 solves a tridiagonal system of the form */
- /* > A * X = B */
- /* > using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF. */
- /* > D is a diagonal matrix specified in the vector D, U (or L) is a unit */
- /* > bidiagonal matrix whose superdiagonal (subdiagonal) is specified in */
- /* > the vector E, and X and B are N by NRHS matrices. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] IUPLO */
- /* > \verbatim */
- /* > IUPLO is INTEGER */
- /* > Specifies the form of the factorization and whether the */
- /* > vector E is the superdiagonal of the upper bidiagonal factor */
- /* > U or the subdiagonal of the lower bidiagonal factor L. */
- /* > = 1: A = U**H *D*U, E is the superdiagonal of U */
- /* > = 0: A = L*D*L**H, E is the subdiagonal of L */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the tridiagonal matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrix B. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > The n diagonal elements of the diagonal matrix D from the */
- /* > factorization A = U**H *D*U or A = L*D*L**H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] E */
- /* > \verbatim */
- /* > E is COMPLEX*16 array, dimension (N-1) */
- /* > If IUPLO = 1, the (n-1) superdiagonal elements of the unit */
- /* > bidiagonal factor U from the factorization A = U**H*D*U. */
- /* > If IUPLO = 0, the (n-1) subdiagonal elements of the unit */
- /* > bidiagonal factor L from the factorization A = L*D*L**H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
- /* > On entry, the right hand side vectors B for the system of */
- /* > linear equations. */
- /* > On exit, the solution vectors, X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup complex16PTcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void zptts2_(integer *iuplo, integer *n, integer *nrhs,
- doublereal *d__, doublecomplex *e, doublecomplex *b, integer *ldb)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Local variables */
- integer i__, j;
- extern /* Subroutine */ void zdscal_(integer *, doublereal *,
- doublecomplex *, integer *);
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Quick return if possible */
-
- /* Parameter adjustments */
- --d__;
- --e;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- if (*n <= 1) {
- if (*n == 1) {
- d__1 = 1. / d__[1];
- zdscal_(nrhs, &d__1, &b[b_offset], ldb);
- }
- return;
- }
-
- if (*iuplo == 1) {
-
- /* Solve A * X = B using the factorization A = U**H *D*U, */
- /* overwriting each right hand side vector with its solution. */
-
- if (*nrhs <= 2) {
- j = 1;
- L10:
-
- /* Solve U**H * x = b. */
-
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- i__4 = i__ - 1 + j * b_dim1;
- d_cnjg(&z__3, &e[i__ - 1]);
- z__2.r = b[i__4].r * z__3.r - b[i__4].i * z__3.i, z__2.i = b[
- i__4].r * z__3.i + b[i__4].i * z__3.r;
- z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L20: */
- }
-
- /* Solve D * U * x = b. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- i__4 = i__;
- z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
- ;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L30: */
- }
- for (i__ = *n - 1; i__ >= 1; --i__) {
- i__1 = i__ + j * b_dim1;
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + 1 + j * b_dim1;
- i__4 = i__;
- z__2.r = b[i__3].r * e[i__4].r - b[i__3].i * e[i__4].i,
- z__2.i = b[i__3].r * e[i__4].i + b[i__3].i * e[i__4]
- .r;
- z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
- b[i__1].r = z__1.r, b[i__1].i = z__1.i;
- /* L40: */
- }
- if (j < *nrhs) {
- ++j;
- goto L10;
- }
- } else {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
-
- /* Solve U**H * x = b. */
-
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ - 1 + j * b_dim1;
- d_cnjg(&z__3, &e[i__ - 1]);
- z__2.r = b[i__5].r * z__3.r - b[i__5].i * z__3.i, z__2.i =
- b[i__5].r * z__3.i + b[i__5].i * z__3.r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L50: */
- }
-
- /* Solve D * U * x = b. */
-
- i__2 = *n + j * b_dim1;
- i__3 = *n + j * b_dim1;
- i__4 = *n;
- z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
- ;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- for (i__ = *n - 1; i__ >= 1; --i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- i__4 = i__;
- z__2.r = b[i__3].r / d__[i__4], z__2.i = b[i__3].i / d__[
- i__4];
- i__5 = i__ + 1 + j * b_dim1;
- i__6 = i__;
- z__3.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i,
- z__3.i = b[i__5].r * e[i__6].i + b[i__5].i * e[
- i__6].r;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L60: */
- }
- /* L70: */
- }
- }
- } else {
-
- /* Solve A * X = B using the factorization A = L*D*L**H, */
- /* overwriting each right hand side vector with its solution. */
-
- if (*nrhs <= 2) {
- j = 1;
- L80:
-
- /* Solve L * x = b. */
-
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- i__4 = i__ - 1 + j * b_dim1;
- i__5 = i__ - 1;
- z__2.r = b[i__4].r * e[i__5].r - b[i__4].i * e[i__5].i,
- z__2.i = b[i__4].r * e[i__5].i + b[i__4].i * e[i__5]
- .r;
- z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L90: */
- }
-
- /* Solve D * L**H * x = b. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- i__4 = i__;
- z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
- ;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L100: */
- }
- for (i__ = *n - 1; i__ >= 1; --i__) {
- i__1 = i__ + j * b_dim1;
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + 1 + j * b_dim1;
- d_cnjg(&z__3, &e[i__]);
- z__2.r = b[i__3].r * z__3.r - b[i__3].i * z__3.i, z__2.i = b[
- i__3].r * z__3.i + b[i__3].i * z__3.r;
- z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
- b[i__1].r = z__1.r, b[i__1].i = z__1.i;
- /* L110: */
- }
- if (j < *nrhs) {
- ++j;
- goto L80;
- }
- } else {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
-
- /* Solve L * x = b. */
-
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ - 1 + j * b_dim1;
- i__6 = i__ - 1;
- z__2.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i,
- z__2.i = b[i__5].r * e[i__6].i + b[i__5].i * e[
- i__6].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L120: */
- }
-
- /* Solve D * L**H * x = b. */
-
- i__2 = *n + j * b_dim1;
- i__3 = *n + j * b_dim1;
- i__4 = *n;
- z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
- ;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- for (i__ = *n - 1; i__ >= 1; --i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- i__4 = i__;
- z__2.r = b[i__3].r / d__[i__4], z__2.i = b[i__3].i / d__[
- i__4];
- i__5 = i__ + 1 + j * b_dim1;
- d_cnjg(&z__4, &e[i__]);
- z__3.r = b[i__5].r * z__4.r - b[i__5].i * z__4.i, z__3.i =
- b[i__5].r * z__4.i + b[i__5].i * z__4.r;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L130: */
- }
- /* L140: */
- }
- }
- }
-
- return;
-
- /* End of ZPTTS2 */
-
- } /* zptts2_ */
|