|
- *> \brief \b ZPBTRS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZPBTRS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtrs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtrs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtrs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, KD, LDAB, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 AB( LDAB, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZPBTRS solves a system of linear equations A*X = B with a Hermitian
- *> positive definite band matrix A using the Cholesky factorization
- *> A = U**H *U or A = L*L**H computed by ZPBTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangular factor stored in AB;
- *> = 'L': Lower triangular factor stored in AB.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB,N)
- *> The triangular factor U or L from the Cholesky factorization
- *> A = U**H *U or A = L*L**H of the band matrix A, stored in the
- *> first KD+1 rows of the array. The j-th column of U or L is
- *> stored in the j-th column of the array AB as follows:
- *> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERcomputational
- *
- * =====================================================================
- SUBROUTINE ZPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, KD, LDAB, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- COMPLEX*16 AB( LDAB, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZTBSV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KD.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZPBTRS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Solve A*X = B where A = U**H *U.
- *
- DO 10 J = 1, NRHS
- *
- * Solve U**H *X = B, overwriting B with X.
- *
- CALL ZTBSV( 'Upper', 'Conjugate transpose', 'Non-unit', N,
- $ KD, AB, LDAB, B( 1, J ), 1 )
- *
- * Solve U*X = B, overwriting B with X.
- *
- CALL ZTBSV( 'Upper', 'No transpose', 'Non-unit', N, KD, AB,
- $ LDAB, B( 1, J ), 1 )
- 10 CONTINUE
- ELSE
- *
- * Solve A*X = B where A = L*L**H.
- *
- DO 20 J = 1, NRHS
- *
- * Solve L*X = B, overwriting B with X.
- *
- CALL ZTBSV( 'Lower', 'No transpose', 'Non-unit', N, KD, AB,
- $ LDAB, B( 1, J ), 1 )
- *
- * Solve L**H *X = B, overwriting B with X.
- *
- CALL ZTBSV( 'Lower', 'Conjugate transpose', 'Non-unit', N,
- $ KD, AB, LDAB, B( 1, J ), 1 )
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of ZPBTRS
- *
- END
|