|
- *> \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an unitary similarity transformation.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLATRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDW, N, NB
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION E( * )
- * COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
- *> Hermitian tridiagonal form by a unitary similarity
- *> transformation Q**H * A * Q, and returns the matrices V and W which are
- *> needed to apply the transformation to the unreduced part of A.
- *>
- *> If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
- *> matrix, of which the upper triangle is supplied;
- *> if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
- *> matrix, of which the lower triangle is supplied.
- *>
- *> This is an auxiliary routine called by ZHETRD.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> The number of rows and columns to be reduced.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- *> n-by-n upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading n-by-n lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *> On exit:
- *> if UPLO = 'U', the last NB columns have been reduced to
- *> tridiagonal form, with the diagonal elements overwriting
- *> the diagonal elements of A; the elements above the diagonal
- *> with the array TAU, represent the unitary matrix Q as a
- *> product of elementary reflectors;
- *> if UPLO = 'L', the first NB columns have been reduced to
- *> tridiagonal form, with the diagonal elements overwriting
- *> the diagonal elements of A; the elements below the diagonal
- *> with the array TAU, represent the unitary matrix Q as a
- *> product of elementary reflectors.
- *> See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
- *> elements of the last NB columns of the reduced matrix;
- *> if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
- *> the first NB columns of the reduced matrix.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (N-1)
- *> The scalar factors of the elementary reflectors, stored in
- *> TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
- *> See Further Details.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is COMPLEX*16 array, dimension (LDW,NB)
- *> The n-by-nb matrix W required to update the unreduced part
- *> of A.
- *> \endverbatim
- *>
- *> \param[in] LDW
- *> \verbatim
- *> LDW is INTEGER
- *> The leading dimension of the array W. LDW >= max(1,N).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> If UPLO = 'U', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(n) H(n-1) . . . H(n-nb+1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
- *> and tau in TAU(i-1).
- *>
- *> If UPLO = 'L', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(1) H(2) . . . H(nb).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
- *> and tau in TAU(i).
- *>
- *> The elements of the vectors v together form the n-by-nb matrix V
- *> which is needed, with W, to apply the transformation to the unreduced
- *> part of the matrix, using a Hermitian rank-2k update of the form:
- *> A := A - V*W**H - W*V**H.
- *>
- *> The contents of A on exit are illustrated by the following examples
- *> with n = 5 and nb = 2:
- *>
- *> if UPLO = 'U': if UPLO = 'L':
- *>
- *> ( a a a v4 v5 ) ( d )
- *> ( a a v4 v5 ) ( 1 d )
- *> ( a 1 v5 ) ( v1 1 a )
- *> ( d 1 ) ( v1 v2 a a )
- *> ( d ) ( v1 v2 a a a )
- *>
- *> where d denotes a diagonal element of the reduced matrix, a denotes
- *> an element of the original matrix that is unchanged, and vi denotes
- *> an element of the vector defining H(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDW, N, NB
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION E( * )
- COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO, ONE, HALF
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ),
- $ HALF = ( 0.5D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, IW
- COMPLEX*16 ALPHA
- * ..
- * .. External Subroutines ..
- EXTERNAL ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- COMPLEX*16 ZDOTC
- EXTERNAL LSAME, ZDOTC
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MIN
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( N.LE.0 )
- $ RETURN
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Reduce last NB columns of upper triangle
- *
- DO 10 I = N, N - NB + 1, -1
- IW = I - N + NB
- IF( I.LT.N ) THEN
- *
- * Update A(1:i,i)
- *
- A( I, I ) = DBLE( A( I, I ) )
- CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
- CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
- $ LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
- CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
- $ LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
- CALL ZLACGV( N-I, A( I, I+1 ), LDA )
- A( I, I ) = DBLE( A( I, I ) )
- END IF
- IF( I.GT.1 ) THEN
- *
- * Generate elementary reflector H(i) to annihilate
- * A(1:i-2,i)
- *
- ALPHA = A( I-1, I )
- CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
- E( I-1 ) = DBLE( ALPHA )
- A( I-1, I ) = ONE
- *
- * Compute W(1:i-1,i)
- *
- CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
- $ ZERO, W( 1, IW ), 1 )
- IF( I.LT.N ) THEN
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
- $ W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
- $ W( I+1, IW ), 1 )
- CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
- $ A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
- $ W( 1, IW ), 1 )
- CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
- $ A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
- $ W( I+1, IW ), 1 )
- CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
- $ W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
- $ W( 1, IW ), 1 )
- END IF
- CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
- ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
- $ A( 1, I ), 1 )
- CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
- END IF
- *
- 10 CONTINUE
- ELSE
- *
- * Reduce first NB columns of lower triangle
- *
- DO 20 I = 1, NB
- *
- * Update A(i:n,i)
- *
- A( I, I ) = DBLE( A( I, I ) )
- CALL ZLACGV( I-1, W( I, 1 ), LDW )
- CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
- $ LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
- CALL ZLACGV( I-1, W( I, 1 ), LDW )
- CALL ZLACGV( I-1, A( I, 1 ), LDA )
- CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
- $ LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
- CALL ZLACGV( I-1, A( I, 1 ), LDA )
- A( I, I ) = DBLE( A( I, I ) )
- IF( I.LT.N ) THEN
- *
- * Generate elementary reflector H(i) to annihilate
- * A(i+2:n,i)
- *
- ALPHA = A( I+1, I )
- CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
- $ TAU( I ) )
- E( I ) = DBLE( ALPHA )
- A( I+1, I ) = ONE
- *
- * Compute W(i+1:n,i)
- *
- CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
- $ A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
- $ W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
- $ W( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
- $ LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
- CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
- $ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
- $ W( 1, I ), 1 )
- CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
- $ LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
- CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
- ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
- $ A( I+1, I ), 1 )
- CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
- END IF
- *
- 20 CONTINUE
- END IF
- *
- RETURN
- *
- * End of ZLATRD
- *
- END
|