|
- *> \brief \b ZLATPS solves a triangular system of equations with the matrix held in packed storage.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLATPS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatps.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatps.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatps.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
- * CNORM, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, NORMIN, TRANS, UPLO
- * INTEGER INFO, N
- * DOUBLE PRECISION SCALE
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION CNORM( * )
- * COMPLEX*16 AP( * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLATPS solves one of the triangular systems
- *>
- *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
- *>
- *> with scaling to prevent overflow, where A is an upper or lower
- *> triangular matrix stored in packed form. Here A**T denotes the
- *> transpose of A, A**H denotes the conjugate transpose of A, x and b
- *> are n-element vectors, and s is a scaling factor, usually less than
- *> or equal to 1, chosen so that the components of x will be less than
- *> the overflow threshold. If the unscaled problem will not cause
- *> overflow, the Level 2 BLAS routine ZTPSV is called. If the matrix A
- *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
- *> non-trivial solution to A*x = 0 is returned.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': Solve A * x = s*b (No transpose)
- *> = 'T': Solve A**T * x = s*b (Transpose)
- *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] NORMIN
- *> \verbatim
- *> NORMIN is CHARACTER*1
- *> Specifies whether CNORM has been set or not.
- *> = 'Y': CNORM contains the column norms on entry
- *> = 'N': CNORM is not set on entry. On exit, the norms will
- *> be computed and stored in CNORM.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> The upper or lower triangular matrix A, packed columnwise in
- *> a linear array. The j-th column of A is stored in the array
- *> AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (N)
- *> On entry, the right hand side b of the triangular system.
- *> On exit, X is overwritten by the solution vector x.
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> The scaling factor s for the triangular system
- *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
- *> If SCALE = 0, the matrix A is singular or badly scaled, and
- *> the vector x is an exact or approximate solution to A*x = 0.
- *> \endverbatim
- *>
- *> \param[in,out] CNORM
- *> \verbatim
- *> CNORM is DOUBLE PRECISION array, dimension (N)
- *>
- *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
- *> contains the norm of the off-diagonal part of the j-th column
- *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
- *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
- *> must be greater than or equal to the 1-norm.
- *>
- *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
- *> returns the 1-norm of the offdiagonal part of the j-th column
- *> of A.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> A rough bound on x is computed; if that is less than overflow, ZTPSV
- *> is called, otherwise, specific code is used which checks for possible
- *> overflow or divide-by-zero at every operation.
- *>
- *> A columnwise scheme is used for solving A*x = b. The basic algorithm
- *> if A is lower triangular is
- *>
- *> x[1:n] := b[1:n]
- *> for j = 1, ..., n
- *> x(j) := x(j) / A(j,j)
- *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
- *> end
- *>
- *> Define bounds on the components of x after j iterations of the loop:
- *> M(j) = bound on x[1:j]
- *> G(j) = bound on x[j+1:n]
- *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
- *>
- *> Then for iteration j+1 we have
- *> M(j+1) <= G(j) / | A(j+1,j+1) |
- *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
- *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
- *>
- *> where CNORM(j+1) is greater than or equal to the infinity-norm of
- *> column j+1 of A, not counting the diagonal. Hence
- *>
- *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
- *> 1<=i<=j
- *> and
- *>
- *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
- *> 1<=i< j
- *>
- *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTPSV if the
- *> reciprocal of the largest M(j), j=1,..,n, is larger than
- *> max(underflow, 1/overflow).
- *>
- *> The bound on x(j) is also used to determine when a step in the
- *> columnwise method can be performed without fear of overflow. If
- *> the computed bound is greater than a large constant, x is scaled to
- *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
- *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
- *>
- *> Similarly, a row-wise scheme is used to solve A**T *x = b or
- *> A**H *x = b. The basic algorithm for A upper triangular is
- *>
- *> for j = 1, ..., n
- *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
- *> end
- *>
- *> We simultaneously compute two bounds
- *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
- *> M(j) = bound on x(i), 1<=i<=j
- *>
- *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
- *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
- *> Then the bound on x(j) is
- *>
- *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
- *>
- *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
- *> 1<=i<=j
- *>
- *> and we can safely call ZTPSV if 1/M(n) and 1/G(n) are both greater
- *> than max(underflow, 1/overflow).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
- $ CNORM, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, NORMIN, TRANS, UPLO
- INTEGER INFO, N
- DOUBLE PRECISION SCALE
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION CNORM( * )
- COMPLEX*16 AP( * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, HALF, ONE, TWO
- PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
- $ TWO = 2.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN, NOUNIT, UPPER
- INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
- DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
- $ XBND, XJ, XMAX
- COMPLEX*16 CSUMJ, TJJS, USCAL, ZDUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX, IZAMAX
- DOUBLE PRECISION DLAMCH, DZASUM
- COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
- EXTERNAL LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
- $ ZDOTU, ZLADIV
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTPSV, DLABAD
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1, CABS2
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
- CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
- $ ABS( DIMAG( ZDUM ) / 2.D0 )
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- NOTRAN = LSAME( TRANS, 'N' )
- NOUNIT = LSAME( DIAG, 'N' )
- *
- * Test the input parameters.
- *
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
- INFO = -3
- ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
- $ LSAME( NORMIN, 'N' ) ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZLATPS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine machine dependent parameters to control overflow.
- *
- SMLNUM = DLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- SMLNUM = SMLNUM / DLAMCH( 'Precision' )
- BIGNUM = ONE / SMLNUM
- SCALE = ONE
- *
- IF( LSAME( NORMIN, 'N' ) ) THEN
- *
- * Compute the 1-norm of each column, not including the diagonal.
- *
- IF( UPPER ) THEN
- *
- * A is upper triangular.
- *
- IP = 1
- DO 10 J = 1, N
- CNORM( J ) = DZASUM( J-1, AP( IP ), 1 )
- IP = IP + J
- 10 CONTINUE
- ELSE
- *
- * A is lower triangular.
- *
- IP = 1
- DO 20 J = 1, N - 1
- CNORM( J ) = DZASUM( N-J, AP( IP+1 ), 1 )
- IP = IP + N - J + 1
- 20 CONTINUE
- CNORM( N ) = ZERO
- END IF
- END IF
- *
- * Scale the column norms by TSCAL if the maximum element in CNORM is
- * greater than BIGNUM/2.
- *
- IMAX = IDAMAX( N, CNORM, 1 )
- TMAX = CNORM( IMAX )
- IF( TMAX.LE.BIGNUM*HALF ) THEN
- TSCAL = ONE
- ELSE
- TSCAL = HALF / ( SMLNUM*TMAX )
- CALL DSCAL( N, TSCAL, CNORM, 1 )
- END IF
- *
- * Compute a bound on the computed solution vector to see if the
- * Level 2 BLAS routine ZTPSV can be used.
- *
- XMAX = ZERO
- DO 30 J = 1, N
- XMAX = MAX( XMAX, CABS2( X( J ) ) )
- 30 CONTINUE
- XBND = XMAX
- IF( NOTRAN ) THEN
- *
- * Compute the growth in A * x = b.
- *
- IF( UPPER ) THEN
- JFIRST = N
- JLAST = 1
- JINC = -1
- ELSE
- JFIRST = 1
- JLAST = N
- JINC = 1
- END IF
- *
- IF( TSCAL.NE.ONE ) THEN
- GROW = ZERO
- GO TO 60
- END IF
- *
- IF( NOUNIT ) THEN
- *
- * A is non-unit triangular.
- *
- * Compute GROW = 1/G(j) and XBND = 1/M(j).
- * Initially, G(0) = max{x(i), i=1,...,n}.
- *
- GROW = HALF / MAX( XBND, SMLNUM )
- XBND = GROW
- IP = JFIRST*( JFIRST+1 ) / 2
- JLEN = N
- DO 40 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 60
- *
- TJJS = AP( IP )
- TJJ = CABS1( TJJS )
- *
- IF( TJJ.GE.SMLNUM ) THEN
- *
- * M(j) = G(j-1) / abs(A(j,j))
- *
- XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
- ELSE
- *
- * M(j) could overflow, set XBND to 0.
- *
- XBND = ZERO
- END IF
- *
- IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
- *
- * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
- *
- GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
- ELSE
- *
- * G(j) could overflow, set GROW to 0.
- *
- GROW = ZERO
- END IF
- IP = IP + JINC*JLEN
- JLEN = JLEN - 1
- 40 CONTINUE
- GROW = XBND
- ELSE
- *
- * A is unit triangular.
- *
- * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
- *
- GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
- DO 50 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 60
- *
- * G(j) = G(j-1)*( 1 + CNORM(j) )
- *
- GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- *
- ELSE
- *
- * Compute the growth in A**T * x = b or A**H * x = b.
- *
- IF( UPPER ) THEN
- JFIRST = 1
- JLAST = N
- JINC = 1
- ELSE
- JFIRST = N
- JLAST = 1
- JINC = -1
- END IF
- *
- IF( TSCAL.NE.ONE ) THEN
- GROW = ZERO
- GO TO 90
- END IF
- *
- IF( NOUNIT ) THEN
- *
- * A is non-unit triangular.
- *
- * Compute GROW = 1/G(j) and XBND = 1/M(j).
- * Initially, M(0) = max{x(i), i=1,...,n}.
- *
- GROW = HALF / MAX( XBND, SMLNUM )
- XBND = GROW
- IP = JFIRST*( JFIRST+1 ) / 2
- JLEN = 1
- DO 70 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 90
- *
- * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
- *
- XJ = ONE + CNORM( J )
- GROW = MIN( GROW, XBND / XJ )
- *
- TJJS = AP( IP )
- TJJ = CABS1( TJJS )
- *
- IF( TJJ.GE.SMLNUM ) THEN
- *
- * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
- *
- IF( XJ.GT.TJJ )
- $ XBND = XBND*( TJJ / XJ )
- ELSE
- *
- * M(j) could overflow, set XBND to 0.
- *
- XBND = ZERO
- END IF
- JLEN = JLEN + 1
- IP = IP + JINC*JLEN
- 70 CONTINUE
- GROW = MIN( GROW, XBND )
- ELSE
- *
- * A is unit triangular.
- *
- * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
- *
- GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
- DO 80 J = JFIRST, JLAST, JINC
- *
- * Exit the loop if the growth factor is too small.
- *
- IF( GROW.LE.SMLNUM )
- $ GO TO 90
- *
- * G(j) = ( 1 + CNORM(j) )*G(j-1)
- *
- XJ = ONE + CNORM( J )
- GROW = GROW / XJ
- 80 CONTINUE
- END IF
- 90 CONTINUE
- END IF
- *
- IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
- *
- * Use the Level 2 BLAS solve if the reciprocal of the bound on
- * elements of X is not too small.
- *
- CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
- ELSE
- *
- * Use a Level 1 BLAS solve, scaling intermediate results.
- *
- IF( XMAX.GT.BIGNUM*HALF ) THEN
- *
- * Scale X so that its components are less than or equal to
- * BIGNUM in absolute value.
- *
- SCALE = ( BIGNUM*HALF ) / XMAX
- CALL ZDSCAL( N, SCALE, X, 1 )
- XMAX = BIGNUM
- ELSE
- XMAX = XMAX*TWO
- END IF
- *
- IF( NOTRAN ) THEN
- *
- * Solve A * x = b
- *
- IP = JFIRST*( JFIRST+1 ) / 2
- DO 120 J = JFIRST, JLAST, JINC
- *
- * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
- *
- XJ = CABS1( X( J ) )
- IF( NOUNIT ) THEN
- TJJS = AP( IP )*TSCAL
- ELSE
- TJJS = TSCAL
- IF( TSCAL.EQ.ONE )
- $ GO TO 110
- END IF
- TJJ = CABS1( TJJS )
- IF( TJJ.GT.SMLNUM ) THEN
- *
- * abs(A(j,j)) > SMLNUM:
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by 1/b(j).
- *
- REC = ONE / XJ
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J ) = ZLADIV( X( J ), TJJS )
- XJ = CABS1( X( J ) )
- ELSE IF( TJJ.GT.ZERO ) THEN
- *
- * 0 < abs(A(j,j)) <= SMLNUM:
- *
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
- * to avoid overflow when dividing by A(j,j).
- *
- REC = ( TJJ*BIGNUM ) / XJ
- IF( CNORM( J ).GT.ONE ) THEN
- *
- * Scale by 1/CNORM(j) to avoid overflow when
- * multiplying x(j) times column j.
- *
- REC = REC / CNORM( J )
- END IF
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- X( J ) = ZLADIV( X( J ), TJJS )
- XJ = CABS1( X( J ) )
- ELSE
- *
- * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- * scale = 0, and compute a solution to A*x = 0.
- *
- DO 100 I = 1, N
- X( I ) = ZERO
- 100 CONTINUE
- X( J ) = ONE
- XJ = ONE
- SCALE = ZERO
- XMAX = ZERO
- END IF
- 110 CONTINUE
- *
- * Scale x if necessary to avoid overflow when adding a
- * multiple of column j of A.
- *
- IF( XJ.GT.ONE ) THEN
- REC = ONE / XJ
- IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
- *
- * Scale x by 1/(2*abs(x(j))).
- *
- REC = REC*HALF
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- END IF
- ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
- *
- * Scale x by 1/2.
- *
- CALL ZDSCAL( N, HALF, X, 1 )
- SCALE = SCALE*HALF
- END IF
- *
- IF( UPPER ) THEN
- IF( J.GT.1 ) THEN
- *
- * Compute the update
- * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
- *
- CALL ZAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
- $ 1 )
- I = IZAMAX( J-1, X, 1 )
- XMAX = CABS1( X( I ) )
- END IF
- IP = IP - J
- ELSE
- IF( J.LT.N ) THEN
- *
- * Compute the update
- * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
- *
- CALL ZAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
- $ X( J+1 ), 1 )
- I = J + IZAMAX( N-J, X( J+1 ), 1 )
- XMAX = CABS1( X( I ) )
- END IF
- IP = IP + N - J + 1
- END IF
- 120 CONTINUE
- *
- ELSE IF( LSAME( TRANS, 'T' ) ) THEN
- *
- * Solve A**T * x = b
- *
- IP = JFIRST*( JFIRST+1 ) / 2
- JLEN = 1
- DO 170 J = JFIRST, JLAST, JINC
- *
- * Compute x(j) = b(j) - sum A(k,j)*x(k).
- * k<>j
- *
- XJ = CABS1( X( J ) )
- USCAL = TSCAL
- REC = ONE / MAX( XMAX, ONE )
- IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
- *
- * If x(j) could overflow, scale x by 1/(2*XMAX).
- *
- REC = REC*HALF
- IF( NOUNIT ) THEN
- TJJS = AP( IP )*TSCAL
- ELSE
- TJJS = TSCAL
- END IF
- TJJ = CABS1( TJJS )
- IF( TJJ.GT.ONE ) THEN
- *
- * Divide by A(j,j) when scaling x if A(j,j) > 1.
- *
- REC = MIN( ONE, REC*TJJ )
- USCAL = ZLADIV( USCAL, TJJS )
- END IF
- IF( REC.LT.ONE ) THEN
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- CSUMJ = ZERO
- IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
- *
- * If the scaling needed for A in the dot product is 1,
- * call ZDOTU to perform the dot product.
- *
- IF( UPPER ) THEN
- CSUMJ = ZDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
- ELSE IF( J.LT.N ) THEN
- CSUMJ = ZDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
- END IF
- ELSE
- *
- * Otherwise, use in-line code for the dot product.
- *
- IF( UPPER ) THEN
- DO 130 I = 1, J - 1
- CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
- 130 CONTINUE
- ELSE IF( J.LT.N ) THEN
- DO 140 I = 1, N - J
- CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
- 140 CONTINUE
- END IF
- END IF
- *
- IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
- *
- * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
- * was not used to scale the dotproduct.
- *
- X( J ) = X( J ) - CSUMJ
- XJ = CABS1( X( J ) )
- IF( NOUNIT ) THEN
- *
- * Compute x(j) = x(j) / A(j,j), scaling if necessary.
- *
- TJJS = AP( IP )*TSCAL
- ELSE
- TJJS = TSCAL
- IF( TSCAL.EQ.ONE )
- $ GO TO 160
- END IF
- TJJ = CABS1( TJJS )
- IF( TJJ.GT.SMLNUM ) THEN
- *
- * abs(A(j,j)) > SMLNUM:
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale X by 1/abs(x(j)).
- *
- REC = ONE / XJ
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J ) = ZLADIV( X( J ), TJJS )
- ELSE IF( TJJ.GT.ZERO ) THEN
- *
- * 0 < abs(A(j,j)) <= SMLNUM:
- *
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
- *
- REC = ( TJJ*BIGNUM ) / XJ
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- X( J ) = ZLADIV( X( J ), TJJS )
- ELSE
- *
- * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- * scale = 0 and compute a solution to A**T *x = 0.
- *
- DO 150 I = 1, N
- X( I ) = ZERO
- 150 CONTINUE
- X( J ) = ONE
- SCALE = ZERO
- XMAX = ZERO
- END IF
- 160 CONTINUE
- ELSE
- *
- * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
- * product has already been divided by 1/A(j,j).
- *
- X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
- END IF
- XMAX = MAX( XMAX, CABS1( X( J ) ) )
- JLEN = JLEN + 1
- IP = IP + JINC*JLEN
- 170 CONTINUE
- *
- ELSE
- *
- * Solve A**H * x = b
- *
- IP = JFIRST*( JFIRST+1 ) / 2
- JLEN = 1
- DO 220 J = JFIRST, JLAST, JINC
- *
- * Compute x(j) = b(j) - sum A(k,j)*x(k).
- * k<>j
- *
- XJ = CABS1( X( J ) )
- USCAL = TSCAL
- REC = ONE / MAX( XMAX, ONE )
- IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
- *
- * If x(j) could overflow, scale x by 1/(2*XMAX).
- *
- REC = REC*HALF
- IF( NOUNIT ) THEN
- TJJS = DCONJG( AP( IP ) )*TSCAL
- ELSE
- TJJS = TSCAL
- END IF
- TJJ = CABS1( TJJS )
- IF( TJJ.GT.ONE ) THEN
- *
- * Divide by A(j,j) when scaling x if A(j,j) > 1.
- *
- REC = MIN( ONE, REC*TJJ )
- USCAL = ZLADIV( USCAL, TJJS )
- END IF
- IF( REC.LT.ONE ) THEN
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- CSUMJ = ZERO
- IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
- *
- * If the scaling needed for A in the dot product is 1,
- * call ZDOTC to perform the dot product.
- *
- IF( UPPER ) THEN
- CSUMJ = ZDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
- ELSE IF( J.LT.N ) THEN
- CSUMJ = ZDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
- END IF
- ELSE
- *
- * Otherwise, use in-line code for the dot product.
- *
- IF( UPPER ) THEN
- DO 180 I = 1, J - 1
- CSUMJ = CSUMJ + ( DCONJG( AP( IP-J+I ) )*USCAL )
- $ *X( I )
- 180 CONTINUE
- ELSE IF( J.LT.N ) THEN
- DO 190 I = 1, N - J
- CSUMJ = CSUMJ + ( DCONJG( AP( IP+I ) )*USCAL )*
- $ X( J+I )
- 190 CONTINUE
- END IF
- END IF
- *
- IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
- *
- * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
- * was not used to scale the dotproduct.
- *
- X( J ) = X( J ) - CSUMJ
- XJ = CABS1( X( J ) )
- IF( NOUNIT ) THEN
- *
- * Compute x(j) = x(j) / A(j,j), scaling if necessary.
- *
- TJJS = DCONJG( AP( IP ) )*TSCAL
- ELSE
- TJJS = TSCAL
- IF( TSCAL.EQ.ONE )
- $ GO TO 210
- END IF
- TJJ = CABS1( TJJS )
- IF( TJJ.GT.SMLNUM ) THEN
- *
- * abs(A(j,j)) > SMLNUM:
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale X by 1/abs(x(j)).
- *
- REC = ONE / XJ
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J ) = ZLADIV( X( J ), TJJS )
- ELSE IF( TJJ.GT.ZERO ) THEN
- *
- * 0 < abs(A(j,j)) <= SMLNUM:
- *
- IF( XJ.GT.TJJ*BIGNUM ) THEN
- *
- * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
- *
- REC = ( TJJ*BIGNUM ) / XJ
- CALL ZDSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- X( J ) = ZLADIV( X( J ), TJJS )
- ELSE
- *
- * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
- * scale = 0 and compute a solution to A**H *x = 0.
- *
- DO 200 I = 1, N
- X( I ) = ZERO
- 200 CONTINUE
- X( J ) = ONE
- SCALE = ZERO
- XMAX = ZERO
- END IF
- 210 CONTINUE
- ELSE
- *
- * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
- * product has already been divided by 1/A(j,j).
- *
- X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
- END IF
- XMAX = MAX( XMAX, CABS1( X( J ) ) )
- JLEN = JLEN + 1
- IP = IP + JINC*JLEN
- 220 CONTINUE
- END IF
- SCALE = SCALE / TSCAL
- END IF
- *
- * Scale the column norms by 1/TSCAL for return.
- *
- IF( TSCAL.NE.ONE ) THEN
- CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
- END IF
- *
- RETURN
- *
- * End of ZLATPS
- *
- END
|