|
- *> \brief \b ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZLANHT + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanht.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanht.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanht.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION ZLANHT( NORM, N, D, E )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM
- * INTEGER N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * )
- * COMPLEX*16 E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLANHT returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of a
- *> complex Hermitian tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \return ZLANHT
- *> \verbatim
- *>
- *> ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in ZLANHT as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0. When N = 0, ZLANHT is
- *> set to zero.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is COMPLEX*16 array, dimension (N-1)
- *> The (n-1) sub-diagonal or super-diagonal elements of A.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION ZLANHT( NORM, N, D, E )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER NORM
- INTEGER N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * )
- COMPLEX*16 E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- DOUBLE PRECISION ANORM, SCALE, SUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME, DISNAN
- EXTERNAL LSAME, DISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASSQ, ZLASSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( N.LE.0 ) THEN
- ANORM = ZERO
- ELSE IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- ANORM = ABS( D( N ) )
- DO 10 I = 1, N - 1
- SUM = ABS( D( I ) )
- IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
- SUM = ABS( E( I ) )
- IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
- 10 CONTINUE
- ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
- $ LSAME( NORM, 'I' ) ) THEN
- *
- * Find norm1(A).
- *
- IF( N.EQ.1 ) THEN
- ANORM = ABS( D( 1 ) )
- ELSE
- ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
- SUM = ABS( E( N-1 ) )+ABS( D( N ) )
- IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
- DO 20 I = 2, N - 1
- SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
- IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
- 20 CONTINUE
- END IF
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- *
- SCALE = ZERO
- SUM = ONE
- IF( N.GT.1 ) THEN
- CALL ZLASSQ( N-1, E, 1, SCALE, SUM )
- SUM = 2*SUM
- END IF
- CALL DLASSQ( N, D, 1, SCALE, SUM )
- ANORM = SCALE*SQRT( SUM )
- END IF
- *
- ZLANHT = ANORM
- RETURN
- *
- * End of ZLANHT
- *
- END
|