|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublereal c_b9 = 1.;
- static doublereal c_b10 = 0.;
- static integer c__2 = 2;
-
- /* > \brief \b ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZLALSA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsa.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsa.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsa.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
- /* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
- /* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, */
- /* IWORK, INFO ) */
-
- /* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
- /* $ SMLSIZ */
- /* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
- /* $ K( * ), PERM( LDGCOL, * ) */
- /* DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
- /* $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), */
- /* $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * ) */
- /* COMPLEX*16 B( LDB, * ), BX( LDBX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLALSA is an itermediate step in solving the least squares problem */
- /* > by computing the SVD of the coefficient matrix in compact form (The */
- /* > singular vectors are computed as products of simple orthorgonal */
- /* > matrices.). */
- /* > */
- /* > If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector */
- /* > matrix of an upper bidiagonal matrix to the right hand side; and if */
- /* > ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the */
- /* > right hand side. The singular vector matrices were generated in */
- /* > compact form by ZLALSA. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] ICOMPQ */
- /* > \verbatim */
- /* > ICOMPQ is INTEGER */
- /* > Specifies whether the left or the right singular vector */
- /* > matrix is involved. */
- /* > = 0: Left singular vector matrix */
- /* > = 1: Right singular vector matrix */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SMLSIZ */
- /* > \verbatim */
- /* > SMLSIZ is INTEGER */
- /* > The maximum size of the subproblems at the bottom of the */
- /* > computation tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The row and column dimensions of the upper bidiagonal matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of columns of B and BX. NRHS must be at least 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension ( LDB, NRHS ) */
- /* > On input, B contains the right hand sides of the least */
- /* > squares problem in rows 1 through M. */
- /* > On output, B contains the solution X in rows 1 through N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B in the calling subprogram. */
- /* > LDB must be at least f2cmax(1,MAX( M, N ) ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BX */
- /* > \verbatim */
- /* > BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) */
- /* > On exit, the result of applying the left or right singular */
- /* > vector matrix to B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDBX */
- /* > \verbatim */
- /* > LDBX is INTEGER */
- /* > The leading dimension of BX. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] U */
- /* > \verbatim */
- /* > U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */
- /* > On entry, U contains the left singular vector matrices of all */
- /* > subproblems at the bottom level. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER, LDU = > N. */
- /* > The leading dimension of arrays U, VT, DIFL, DIFR, */
- /* > POLES, GIVNUM, and Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VT */
- /* > \verbatim */
- /* > VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */
- /* > On entry, VT**H contains the right singular vector matrices of */
- /* > all subproblems at the bottom level. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] K */
- /* > \verbatim */
- /* > K is INTEGER array, dimension ( N ). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIFL */
- /* > \verbatim */
- /* > DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
- /* > where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIFR */
- /* > \verbatim */
- /* > DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
- /* > On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
- /* > distances between singular values on the I-th level and */
- /* > singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
- /* > record the normalizing factors of the right singular vectors */
- /* > matrices of subproblems on I-th level. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
- /* > On entry, Z(1, I) contains the components of the deflation- */
- /* > adjusted updating row vector for subproblems on the I-th */
- /* > level. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] POLES */
- /* > \verbatim */
- /* > POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
- /* > On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
- /* > singular values involved in the secular equations on the I-th */
- /* > level. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVPTR */
- /* > \verbatim */
- /* > GIVPTR is INTEGER array, dimension ( N ). */
- /* > On entry, GIVPTR( I ) records the number of Givens */
- /* > rotations performed on the I-th problem on the computation */
- /* > tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVCOL */
- /* > \verbatim */
- /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
- /* > On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
- /* > locations of Givens rotations performed on the I-th level on */
- /* > the computation tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDGCOL */
- /* > \verbatim */
- /* > LDGCOL is INTEGER, LDGCOL = > N. */
- /* > The leading dimension of arrays GIVCOL and PERM. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PERM */
- /* > \verbatim */
- /* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
- /* > On entry, PERM(*, I) records permutations done on the I-th */
- /* > level of the computation tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVNUM */
- /* > \verbatim */
- /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
- /* > On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
- /* > values of Givens rotations performed on the I-th level on the */
- /* > computation tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] C */
- /* > \verbatim */
- /* > C is DOUBLE PRECISION array, dimension ( N ). */
- /* > On entry, if the I-th subproblem is not square, */
- /* > C( I ) contains the C-value of a Givens rotation related to */
- /* > the right null space of the I-th subproblem. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] S */
- /* > \verbatim */
- /* > S is DOUBLE PRECISION array, dimension ( N ). */
- /* > On entry, if the I-th subproblem is not square, */
- /* > S( I ) contains the S-value of a Givens rotation related to */
- /* > the right null space of the I-th subproblem. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is DOUBLE PRECISION array, dimension at least */
- /* > MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (3*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* > California at Berkeley, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
-
- /* ===================================================================== */
- /* Subroutine */ void zlalsa_(integer *icompq, integer *smlsiz, integer *n,
- integer *nrhs, doublecomplex *b, integer *ldb, doublecomplex *bx,
- integer *ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *
- k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
- poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
- perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
- rwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
- difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
- poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
- z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1,
- i__2, i__3, i__4, i__5, i__6;
- doublecomplex z__1;
-
- /* Local variables */
- integer jcol, nlvl, sqre, jrow, i__, j, jimag;
- extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer jreal, inode, ndiml, ndimr, i1;
- extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlals0_(integer *, integer *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- integer ic, lf, nd, ll, nl, nr;
- extern /* Subroutine */ void dlasdt_(integer *, integer *, integer *,
- integer *, integer *, integer *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1 * 1;
- bx -= bx_offset;
- givnum_dim1 = *ldu;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
- poles_dim1 = *ldu;
- poles_offset = 1 + poles_dim1 * 1;
- poles -= poles_offset;
- z_dim1 = *ldu;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- difr_dim1 = *ldu;
- difr_offset = 1 + difr_dim1 * 1;
- difr -= difr_offset;
- difl_dim1 = *ldu;
- difl_offset = 1 + difl_dim1 * 1;
- difl -= difl_offset;
- vt_dim1 = *ldu;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- --k;
- --givptr;
- perm_dim1 = *ldgcol;
- perm_offset = 1 + perm_dim1 * 1;
- perm -= perm_offset;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- --c__;
- --s;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*smlsiz < 3) {
- *info = -2;
- } else if (*n < *smlsiz) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < *n) {
- *info = -6;
- } else if (*ldbx < *n) {
- *info = -8;
- } else if (*ldu < *n) {
- *info = -10;
- } else if (*ldgcol < *n) {
- *info = -19;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZLALSA", &i__1, (ftnlen)6);
- return;
- }
-
- /* Book-keeping and setting up the computation tree. */
-
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
-
- dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
-
- /* The following code applies back the left singular vector factors. */
- /* For applying back the right singular vector factors, go to 170. */
-
- if (*icompq == 1) {
- goto L170;
- }
-
- /* The nodes on the bottom level of the tree were solved */
- /* by DLASDQ. The corresponding left and right singular vector */
- /* matrices are in explicit form. First apply back the left */
- /* singular vector matrices. */
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
-
- /* IC : center row of each node */
- /* NL : number of rows of left subproblem */
- /* NR : number of rows of right subproblem */
- /* NLF: starting row of the left subproblem */
- /* NRF: starting row of the right subproblem */
-
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlf = ic - nl;
- nrf = ic + 1;
-
- /* Since B and BX are complex, the following call to DGEMM */
- /* is performed in two steps (real and imaginary parts). */
-
- /* CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, */
- /* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
-
- j = nl * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nl - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
- /* L10: */
- }
- /* L20: */
- }
- dgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[
- (nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[1], &nl);
- j = nl * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nl - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L30: */
- }
- /* L40: */
- }
- dgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[
- (nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[nl * *nrhs + 1], &
- nl);
- jreal = 0;
- jimag = nl * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nl - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
- /* L50: */
- }
- /* L60: */
- }
-
- /* Since B and BX are complex, the following call to DGEMM */
- /* is performed in two steps (real and imaginary parts). */
-
- /* CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, */
- /* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */
-
- j = nr * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nr - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
- /* L70: */
- }
- /* L80: */
- }
- dgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[
- (nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[1], &nr);
- j = nr * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nr - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L90: */
- }
- /* L100: */
- }
- dgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[
- (nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[nr * *nrhs + 1], &
- nr);
- jreal = 0;
- jimag = nr * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nr - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
- /* L110: */
- }
- /* L120: */
- }
-
- /* L130: */
- }
-
- /* Next copy the rows of B that correspond to unchanged rows */
- /* in the bidiagonal matrix to BX. */
-
- i__1 = nd;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ic = iwork[inode + i__ - 1];
- zcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
- /* L140: */
- }
-
- /* Finally go through the left singular vector matrices of all */
- /* the other subproblems bottom-up on the tree. */
-
- j = pow_ii(c__2, nlvl);
- sqre = 0;
-
- for (lvl = nlvl; lvl >= 1; --lvl) {
- lvl2 = (lvl << 1) - 1;
-
- /* find the first node LF and last node LL on */
- /* the current level LVL */
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(c__2, i__1);
- ll = (lf << 1) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- --j;
- zlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
- b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &rwork[1], info);
- /* L150: */
- }
- /* L160: */
- }
- goto L330;
-
- /* ICOMPQ = 1: applying back the right singular vector factors. */
-
- L170:
-
- /* First now go through the right singular vector matrices of all */
- /* the tree nodes top-down. */
-
- j = 0;
- i__1 = nlvl;
- for (lvl = 1; lvl <= i__1; ++lvl) {
- lvl2 = (lvl << 1) - 1;
-
- /* Find the first node LF and last node LL on */
- /* the current level LVL. */
-
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__2 = lvl - 1;
- lf = pow_ii(c__2, i__2);
- ll = (lf << 1) - 1;
- }
- i__2 = lf;
- for (i__ = ll; i__ >= i__2; --i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- if (i__ == ll) {
- sqre = 0;
- } else {
- sqre = 1;
- }
- ++j;
- zlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
- nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &rwork[1], info);
- /* L180: */
- }
- /* L190: */
- }
-
- /* The nodes on the bottom level of the tree were solved */
- /* by DLASDQ. The corresponding right singular vector */
- /* matrices are in explicit form. Apply them back. */
-
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlp1 = nl + 1;
- if (i__ == nd) {
- nrp1 = nr;
- } else {
- nrp1 = nr + 1;
- }
- nlf = ic - nl;
- nrf = ic + 1;
-
- /* Since B and BX are complex, the following call to DGEMM is */
- /* performed in two steps (real and imaginary parts). */
-
- /* CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, */
- /* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
-
- j = nlp1 * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nlp1 - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
- /* L200: */
- }
- /* L210: */
- }
- dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, &
- rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[1], &
- nlp1);
- j = nlp1 * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nlp1 - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L220: */
- }
- /* L230: */
- }
- dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, &
- rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[nlp1 * *
- nrhs + 1], &nlp1);
- jreal = 0;
- jimag = nlp1 * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nlf + nlp1 - 1;
- for (jrow = nlf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
- /* L240: */
- }
- /* L250: */
- }
-
- /* Since B and BX are complex, the following call to DGEMM is */
- /* performed in two steps (real and imaginary parts). */
-
- /* CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, */
- /* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */
-
- j = nrp1 * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nrp1 - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- i__4 = jrow + jcol * b_dim1;
- rwork[j] = b[i__4].r;
- /* L260: */
- }
- /* L270: */
- }
- dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, &
- rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[1], &
- nrp1);
- j = nrp1 * *nrhs << 1;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nrp1 - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++j;
- rwork[j] = d_imag(&b[jrow + jcol * b_dim1]);
- /* L280: */
- }
- /* L290: */
- }
- dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, &
- rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[nrp1 * *
- nrhs + 1], &nrp1);
- jreal = 0;
- jimag = nrp1 * *nrhs;
- i__2 = *nrhs;
- for (jcol = 1; jcol <= i__2; ++jcol) {
- i__3 = nrf + nrp1 - 1;
- for (jrow = nrf; jrow <= i__3; ++jrow) {
- ++jreal;
- ++jimag;
- i__4 = jrow + jcol * bx_dim1;
- i__5 = jreal;
- i__6 = jimag;
- z__1.r = rwork[i__5], z__1.i = rwork[i__6];
- bx[i__4].r = z__1.r, bx[i__4].i = z__1.i;
- /* L300: */
- }
- /* L310: */
- }
-
- /* L320: */
- }
-
- L330:
-
- return;
-
- /* End of ZLALSA */
-
- } /* zlalsa_ */
|