|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__1 = 1;
- static integer c__12 = 12;
- static integer c__2 = 2;
- static integer c__49 = 49;
-
- /* > \brief \b ZHSEQR */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZHSEQR + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhseqr.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhseqr.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhseqr.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, */
- /* WORK, LWORK, INFO ) */
-
- /* INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N */
- /* CHARACTER COMPZ, JOB */
- /* COMPLEX*16 H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZHSEQR computes the eigenvalues of a Hessenberg matrix H */
- /* > and, optionally, the matrices T and Z from the Schur decomposition */
- /* > H = Z T Z**H, where T is an upper triangular matrix (the */
- /* > Schur form), and Z is the unitary matrix of Schur vectors. */
- /* > */
- /* > Optionally Z may be postmultiplied into an input unitary */
- /* > matrix Q so that this routine can give the Schur factorization */
- /* > of a matrix A which has been reduced to the Hessenberg form H */
- /* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > = 'E': compute eigenvalues only; */
- /* > = 'S': compute eigenvalues and the Schur form T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPZ */
- /* > \verbatim */
- /* > COMPZ is CHARACTER*1 */
- /* > = 'N': no Schur vectors are computed; */
- /* > = 'I': Z is initialized to the unit matrix and the matrix Z */
- /* > of Schur vectors of H is returned; */
- /* > = 'V': Z must contain an unitary matrix Q on entry, and */
- /* > the product Q*Z is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > */
- /* > It is assumed that H is already upper triangular in rows */
- /* > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
- /* > set by a previous call to ZGEBAL, and then passed to ZGEHRD */
- /* > when the matrix output by ZGEBAL is reduced to Hessenberg */
- /* > form. Otherwise ILO and IHI should be set to 1 and N */
- /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
- /* > If N = 0, then ILO = 1 and IHI = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is COMPLEX*16 array, dimension (LDH,N) */
- /* > On entry, the upper Hessenberg matrix H. */
- /* > On exit, if INFO = 0 and JOB = 'S', H contains the upper */
- /* > triangular matrix T from the Schur decomposition (the */
- /* > Schur form). If INFO = 0 and JOB = 'E', the contents of */
- /* > H are unspecified on exit. (The output value of H when */
- /* > INFO > 0 is given under the description of INFO below.) */
- /* > */
- /* > Unlike earlier versions of ZHSEQR, this subroutine may */
- /* > explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 */
- /* > or j = IHI+1, IHI+2, ... N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is COMPLEX*16 array, dimension (N) */
- /* > The computed eigenvalues. If JOB = 'S', the eigenvalues are */
- /* > stored in the same order as on the diagonal of the Schur */
- /* > form returned in H, with W(i) = H(i,i). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX*16 array, dimension (LDZ,N) */
- /* > If COMPZ = 'N', Z is not referenced. */
- /* > If COMPZ = 'I', on entry Z need not be set and on exit, */
- /* > if INFO = 0, Z contains the unitary matrix Z of the Schur */
- /* > vectors of H. If COMPZ = 'V', on entry Z must contain an */
- /* > N-by-N matrix Q, which is assumed to be equal to the unit */
- /* > matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, */
- /* > if INFO = 0, Z contains Q*Z. */
- /* > Normally Q is the unitary matrix generated by ZUNGHR */
- /* > after the call to ZGEHRD which formed the Hessenberg matrix */
- /* > H. (The output value of Z when INFO > 0 is given under */
- /* > the description of INFO below.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. if COMPZ = 'I' or */
- /* > COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (LWORK) */
- /* > On exit, if INFO = 0, WORK(1) returns an estimate of */
- /* > the optimal value for LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
- /* > is sufficient and delivers very good and sometimes */
- /* > optimal performance. However, LWORK as large as 11*N */
- /* > may be required for optimal performance. A workspace */
- /* > query is recommended to determine the optimal workspace */
- /* > size. */
- /* > */
- /* > If LWORK = -1, then ZHSEQR does a workspace query. */
- /* > In this case, ZHSEQR checks the input parameters and */
- /* > estimates the optimal workspace size for the given */
- /* > values of N, ILO and IHI. The estimate is returned */
- /* > in WORK(1). No error message related to LWORK is */
- /* > issued by XERBLA. Neither H nor Z are accessed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal */
- /* > value */
- /* > > 0: if INFO = i, ZHSEQR failed to compute all of */
- /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of W */
- /* > contain those eigenvalues which have been */
- /* > successfully computed. (Failures are rare.) */
- /* > */
- /* > If INFO > 0 and JOB = 'E', then on exit, the */
- /* > remaining unconverged eigenvalues are the eigen- */
- /* > values of the upper Hessenberg matrix rows and */
- /* > columns ILO through INFO of the final, output */
- /* > value of H. */
- /* > */
- /* > If INFO > 0 and JOB = 'S', then on exit */
- /* > */
- /* > (*) (initial value of H)*U = U*(final value of H) */
- /* > */
- /* > where U is a unitary matrix. The final */
- /* > value of H is upper Hessenberg and triangular in */
- /* > rows and columns INFO+1 through IHI. */
- /* > */
- /* > If INFO > 0 and COMPZ = 'V', then on exit */
- /* > */
- /* > (final value of Z) = (initial value of Z)*U */
- /* > */
- /* > where U is the unitary matrix in (*) (regard- */
- /* > less of the value of JOB.) */
- /* > */
- /* > If INFO > 0 and COMPZ = 'I', then on exit */
- /* > (final value of Z) = U */
- /* > where U is the unitary matrix in (*) (regard- */
- /* > less of the value of JOB.) */
- /* > */
- /* > If INFO > 0 and COMPZ = 'N', then Z is not */
- /* > accessed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Karen Braman and Ralph Byers, Department of Mathematics, */
- /* > University of Kansas, USA */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Default values supplied by */
- /* > ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). */
- /* > It is suggested that these defaults be adjusted in order */
- /* > to attain best performance in each particular */
- /* > computational environment. */
- /* > */
- /* > ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point. */
- /* > Default: 75. (Must be at least 11.) */
- /* > */
- /* > ISPEC=13: Recommended deflation window size. */
- /* > This depends on ILO, IHI and NS. NS is the */
- /* > number of simultaneous shifts returned */
- /* > by ILAENV(ISPEC=15). (See ISPEC=15 below.) */
- /* > The default for (IHI-ILO+1) <= 500 is NS. */
- /* > The default for (IHI-ILO+1) > 500 is 3*NS/2. */
- /* > */
- /* > ISPEC=14: Nibble crossover point. (See IPARMQ for */
- /* > details.) Default: 14% of deflation window */
- /* > size. */
- /* > */
- /* > ISPEC=15: Number of simultaneous shifts in a multishift */
- /* > QR iteration. */
- /* > */
- /* > If IHI-ILO+1 is ... */
- /* > */
- /* > greater than ...but less ... the */
- /* > or equal to ... than default is */
- /* > */
- /* > 1 30 NS = 2(+) */
- /* > 30 60 NS = 4(+) */
- /* > 60 150 NS = 10(+) */
- /* > 150 590 NS = ** */
- /* > 590 3000 NS = 64 */
- /* > 3000 6000 NS = 128 */
- /* > 6000 infinity NS = 256 */
- /* > */
- /* > (+) By default some or all matrices of this order */
- /* > are passed to the implicit double shift routine */
- /* > ZLAHQR and this parameter is ignored. See */
- /* > ISPEC=12 above and comments in IPARMQ for */
- /* > details. */
- /* > */
- /* > (**) The asterisks (**) indicate an ad-hoc */
- /* > function of N increasing from 10 to 64. */
- /* > */
- /* > ISPEC=16: Select structured matrix multiply. */
- /* > If the number of simultaneous shifts (specified */
- /* > by ISPEC=15) is less than 14, then the default */
- /* > for ISPEC=16 is 0. Otherwise the default for */
- /* > ISPEC=16 is 2. */
- /* > \endverbatim */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
- /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
- /* > 929--947, 2002. */
- /* > \n */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
- /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
-
- /* ===================================================================== */
- /* Subroutine */ void zhseqr_(char *job, char *compz, integer *n, integer *ilo,
- integer *ihi, doublecomplex *h__, integer *ldh, doublecomplex *w,
- doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2];
- doublereal d__1, d__2, d__3;
- doublecomplex z__1;
- char ch__1[2];
-
- /* Local variables */
- integer kbot, nmin;
- extern logical lsame_(char *, char *);
- logical initz;
- doublecomplex workl[49];
- logical wantt, wantz;
- extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlaqr0_(logical *, logical *,
- integer *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, integer *);
- doublecomplex hl[2401] /* was [49][49] */;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ void zlahqr_(logical *, logical *, integer *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *, integer *, doublecomplex *, integer *, integer *),
- zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zlaset_(char *, integer *,
- integer *, doublecomplex *, doublecomplex *, doublecomplex *,
- integer *);
- logical lquery;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* ==== Matrices of order NTINY or smaller must be processed by */
- /* . ZLAHQR because of insufficient subdiagonal scratch space. */
- /* . (This is a hard limit.) ==== */
-
- /* ==== NL allocates some local workspace to help small matrices */
- /* . through a rare ZLAHQR failure. NL > NTINY = 15 is */
- /* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom- */
- /* . mended. (The default value of NMIN is 75.) Using NL = 49 */
- /* . allows up to six simultaneous shifts and a 16-by-16 */
- /* . deflation window. ==== */
-
- /* ==== Decode and check the input parameters. ==== */
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- wantt = lsame_(job, "S");
- initz = lsame_(compz, "I");
- wantz = initz || lsame_(compz, "V");
- d__1 = (doublereal) f2cmax(1,*n);
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- lquery = *lwork == -1;
-
- *info = 0;
- if (! lsame_(job, "E") && ! wantt) {
- *info = -1;
- } else if (! lsame_(compz, "N") && ! wantz) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
- *info = -4;
- } else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
- *info = -5;
- } else if (*ldh < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldz < 1 || wantz && *ldz < f2cmax(1,*n)) {
- *info = -10;
- } else if (*lwork < f2cmax(1,*n) && ! lquery) {
- *info = -12;
- }
-
- if (*info != 0) {
-
- /* ==== Quick return in case of invalid argument. ==== */
-
- i__1 = -(*info);
- xerbla_("ZHSEQR", &i__1, (ftnlen)6);
- return;
-
- } else if (*n == 0) {
-
- /* ==== Quick return in case N = 0; nothing to do. ==== */
-
- return;
-
- } else if (lquery) {
-
- /* ==== Quick return in case of a workspace query ==== */
-
- zlaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo,
- ihi, &z__[z_offset], ldz, &work[1], lwork, info);
- /* ==== Ensure reported workspace size is backward-compatible with */
- /* . previous LAPACK versions. ==== */
- /* Computing MAX */
- d__2 = work[1].r, d__3 = (doublereal) f2cmax(1,*n);
- d__1 = f2cmax(d__2,d__3);
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return;
-
- } else {
-
- /* ==== copy eigenvalues isolated by ZGEBAL ==== */
-
- if (*ilo > 1) {
- i__1 = *ilo - 1;
- i__2 = *ldh + 1;
- zcopy_(&i__1, &h__[h_offset], &i__2, &w[1], &c__1);
- }
- if (*ihi < *n) {
- i__1 = *n - *ihi;
- i__2 = *ldh + 1;
- zcopy_(&i__1, &h__[*ihi + 1 + (*ihi + 1) * h_dim1], &i__2, &w[*
- ihi + 1], &c__1);
- }
-
- /* ==== Initialize Z, if requested ==== */
-
- if (initz) {
- zlaset_("A", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
- }
-
- /* ==== Quick return if possible ==== */
-
- if (*ilo == *ihi) {
- i__1 = *ilo;
- i__2 = *ilo + *ilo * h_dim1;
- w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
- return;
- }
-
- /* ==== ZLAHQR/ZLAQR0 crossover point ==== */
-
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = job;
- i__3[1] = 1, a__1[1] = compz;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- nmin = ilaenv_(&c__12, "ZHSEQR", ch__1, n, ilo, ihi, lwork, (ftnlen)6,
- (ftnlen)2);
- nmin = f2cmax(15,nmin);
-
- /* ==== ZLAQR0 for big matrices; ZLAHQR for small ones ==== */
-
- if (*n > nmin) {
- zlaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
- ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, info);
- } else {
-
- /* ==== Small matrix ==== */
-
- zlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
- ilo, ihi, &z__[z_offset], ldz, info);
-
- if (*info > 0) {
-
- /* ==== A rare ZLAHQR failure! ZLAQR0 sometimes succeeds */
- /* . when ZLAHQR fails. ==== */
-
- kbot = *info;
-
- if (*n >= 49) {
-
- /* ==== Larger matrices have enough subdiagonal scratch */
- /* . space to call ZLAQR0 directly. ==== */
-
- zlaqr0_(&wantt, &wantz, n, ilo, &kbot, &h__[h_offset],
- ldh, &w[1], ilo, ihi, &z__[z_offset], ldz, &work[
- 1], lwork, info);
-
- } else {
-
- /* ==== Tiny matrices don't have enough subdiagonal */
- /* . scratch space to benefit from ZLAQR0. Hence, */
- /* . tiny matrices must be copied into a larger */
- /* . array before calling ZLAQR0. ==== */
-
- zlacpy_("A", n, n, &h__[h_offset], ldh, hl, &c__49);
- i__1 = *n + 1 + *n * 49 - 50;
- hl[i__1].r = 0., hl[i__1].i = 0.;
- i__1 = 49 - *n;
- zlaset_("A", &c__49, &i__1, &c_b1, &c_b1, &hl[(*n + 1) *
- 49 - 49], &c__49);
- zlaqr0_(&wantt, &wantz, &c__49, ilo, &kbot, hl, &c__49, &
- w[1], ilo, ihi, &z__[z_offset], ldz, workl, &
- c__49, info);
- if (wantt || *info != 0) {
- zlacpy_("A", n, n, hl, &c__49, &h__[h_offset], ldh);
- }
- }
- }
- }
-
- /* ==== Clear out the trash, if necessary. ==== */
-
- if ((wantt || *info != 0) && *n > 2) {
- i__1 = *n - 2;
- i__2 = *n - 2;
- zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &h__[h_dim1 + 3], ldh);
- }
-
- /* ==== Ensure reported workspace size is backward-compatible with */
- /* . previous LAPACK versions. ==== */
-
- /* Computing MAX */
- d__2 = (doublereal) f2cmax(1,*n), d__3 = work[1].r;
- d__1 = f2cmax(d__2,d__3);
- z__1.r = d__1, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- }
-
- /* ==== End of ZHSEQR ==== */
-
- return;
- } /* zhseqr_ */
|