|
- *> \brief \b ZHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHETRF_RK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_rk.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_rk.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_rk.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX*16 A( LDA, * ), E ( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *> ZHETRF_RK computes the factorization of a complex Hermitian matrix A
- *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
- *>
- *> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
- *>
- *> where U (or L) is unit upper (or lower) triangular matrix,
- *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
- *> matrix, P**T is the transpose of P, and D is Hermitian and block
- *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> This is the blocked version of the algorithm, calling Level 3 BLAS.
- *> For more information see Further Details section.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the Hermitian matrix A.
- *> If UPLO = 'U': the leading N-by-N upper triangular part
- *> of A contains the upper triangular part of the matrix A,
- *> and the strictly lower triangular part of A is not
- *> referenced.
- *>
- *> If UPLO = 'L': the leading N-by-N lower triangular part
- *> of A contains the lower triangular part of the matrix A,
- *> and the strictly upper triangular part of A is not
- *> referenced.
- *>
- *> On exit, contains:
- *> a) ONLY diagonal elements of the Hermitian block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> are stored on exit in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is COMPLEX*16 array, dimension (N)
- *> On exit, contains the superdiagonal (or subdiagonal)
- *> elements of the Hermitian block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
- *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
- *>
- *> NOTE: For 1-by-1 diagonal block D(k), where
- *> 1 <= k <= N, the element E(k) is set to 0 in both
- *> UPLO = 'U' or UPLO = 'L' cases.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> IPIV describes the permutation matrix P in the factorization
- *> of matrix A as follows. The absolute value of IPIV(k)
- *> represents the index of row and column that were
- *> interchanged with the k-th row and column. The value of UPLO
- *> describes the order in which the interchanges were applied.
- *> Also, the sign of IPIV represents the block structure of
- *> the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
- *> diagonal blocks which correspond to 1 or 2 interchanges
- *> at each factorization step. For more info see Further
- *> Details section.
- *>
- *> If UPLO = 'U',
- *> ( in factorization order, k decreases from N to 1 ):
- *> a) A single positive entry IPIV(k) > 0 means:
- *> D(k,k) is a 1-by-1 diagonal block.
- *> If IPIV(k) != k, rows and columns k and IPIV(k) were
- *> interchanged in the matrix A(1:N,1:N);
- *> If IPIV(k) = k, no interchange occurred.
- *>
- *> b) A pair of consecutive negative entries
- *> IPIV(k) < 0 and IPIV(k-1) < 0 means:
- *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
- *> (NOTE: negative entries in IPIV appear ONLY in pairs).
- *> 1) If -IPIV(k) != k, rows and columns
- *> k and -IPIV(k) were interchanged
- *> in the matrix A(1:N,1:N).
- *> If -IPIV(k) = k, no interchange occurred.
- *> 2) If -IPIV(k-1) != k-1, rows and columns
- *> k-1 and -IPIV(k-1) were interchanged
- *> in the matrix A(1:N,1:N).
- *> If -IPIV(k-1) = k-1, no interchange occurred.
- *>
- *> c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
- *>
- *> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
- *>
- *> If UPLO = 'L',
- *> ( in factorization order, k increases from 1 to N ):
- *> a) A single positive entry IPIV(k) > 0 means:
- *> D(k,k) is a 1-by-1 diagonal block.
- *> If IPIV(k) != k, rows and columns k and IPIV(k) were
- *> interchanged in the matrix A(1:N,1:N).
- *> If IPIV(k) = k, no interchange occurred.
- *>
- *> b) A pair of consecutive negative entries
- *> IPIV(k) < 0 and IPIV(k+1) < 0 means:
- *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *> (NOTE: negative entries in IPIV appear ONLY in pairs).
- *> 1) If -IPIV(k) != k, rows and columns
- *> k and -IPIV(k) were interchanged
- *> in the matrix A(1:N,1:N).
- *> If -IPIV(k) = k, no interchange occurred.
- *> 2) If -IPIV(k+1) != k+1, rows and columns
- *> k-1 and -IPIV(k-1) were interchanged
- *> in the matrix A(1:N,1:N).
- *> If -IPIV(k+1) = k+1, no interchange occurred.
- *>
- *> c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
- *>
- *> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK >= 1. For best performance
- *> LWORK >= N*NB, where NB is the block size returned
- *> by ILAENV.
- *>
- *> If LWORK = -1, then a workspace query is assumed;
- *> the routine only calculates the optimal size of the WORK
- *> array, returns this value as the first entry of the WORK
- *> array, and no error message related to LWORK is issued
- *> by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *>
- *> < 0: If INFO = -k, the k-th argument had an illegal value
- *>
- *> > 0: If INFO = k, the matrix A is singular, because:
- *> If UPLO = 'U': column k in the upper
- *> triangular part of A contains all zeros.
- *> If UPLO = 'L': column k in the lower
- *> triangular part of A contains all zeros.
- *>
- *> Therefore D(k,k) is exactly zero, and superdiagonal
- *> elements of column k of U (or subdiagonal elements of
- *> column k of L ) are all zeros. The factorization has
- *> been completed, but the block diagonal matrix D is
- *> exactly singular, and division by zero will occur if
- *> it is used to solve a system of equations.
- *>
- *> NOTE: INFO only stores the first occurrence of
- *> a singularity, any subsequent occurrence of singularity
- *> is not stored in INFO even though the factorization
- *> always completes.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup hetrf_rk
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *> TODO: put correct description
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> December 2016, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE ZHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * ), E( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER
- INTEGER I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
- $ NB, NBMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLAHEF_RK, ZHETF2_RK, ZSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- *
- * Determine the block size
- *
- NB = ILAENV( 1, 'ZHETRF_RK', UPLO, N, -1, -1, -1 )
- LWKOPT = MAX( 1, N*NB )
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHETRF_RK', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- NBMIN = 2
- LDWORK = N
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- NB = MAX( LWORK / LDWORK, 1 )
- NBMIN = MAX( 2, ILAENV( 2, 'ZHETRF_RK',
- $ UPLO, N, -1, -1, -1 ) )
- END IF
- ELSE
- IWS = 1
- END IF
- IF( NB.LT.NBMIN )
- $ NB = N
- *
- IF( UPPER ) THEN
- *
- * Factorize A as U*D*U**T using the upper triangle of A
- *
- * K is the main loop index, decreasing from N to 1 in steps of
- * KB, where KB is the number of columns factorized by ZLAHEF_RK;
- * KB is either NB or NB-1, or K for the last block
- *
- K = N
- 10 CONTINUE
- *
- * If K < 1, exit from loop
- *
- IF( K.LT.1 )
- $ GO TO 15
- *
- IF( K.GT.NB ) THEN
- *
- * Factorize columns k-kb+1:k of A and use blocked code to
- * update columns 1:k-kb
- *
- CALL ZLAHEF_RK( UPLO, K, NB, KB, A, LDA, E,
- $ IPIV, WORK, LDWORK, IINFO )
- ELSE
- *
- * Use unblocked code to factorize columns 1:k of A
- *
- CALL ZHETF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO )
- KB = K
- END IF
- *
- * Set INFO on the first occurrence of a zero pivot
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO
- *
- * No need to adjust IPIV
- *
- *
- * Apply permutations to the leading panel 1:k-1
- *
- * Read IPIV from the last block factored, i.e.
- * indices k-kb+1:k and apply row permutations to the
- * last k+1 colunms k+1:N after that block
- * (We can do the simple loop over IPIV with decrement -1,
- * since the ABS value of IPIV( I ) represents the row index
- * of the interchange with row i in both 1x1 and 2x2 pivot cases)
- *
- IF( K.LT.N ) THEN
- DO I = K, ( K - KB + 1 ), -1
- IP = ABS( IPIV( I ) )
- IF( IP.NE.I ) THEN
- CALL ZSWAP( N-K, A( I, K+1 ), LDA,
- $ A( IP, K+1 ), LDA )
- END IF
- END DO
- END IF
- *
- * Decrease K and return to the start of the main loop
- *
- K = K - KB
- GO TO 10
- *
- * This label is the exit from main loop over K decreasing
- * from N to 1 in steps of KB
- *
- 15 CONTINUE
- *
- ELSE
- *
- * Factorize A as L*D*L**T using the lower triangle of A
- *
- * K is the main loop index, increasing from 1 to N in steps of
- * KB, where KB is the number of columns factorized by ZLAHEF_RK;
- * KB is either NB or NB-1, or N-K+1 for the last block
- *
- K = 1
- 20 CONTINUE
- *
- * If K > N, exit from loop
- *
- IF( K.GT.N )
- $ GO TO 35
- *
- IF( K.LE.N-NB ) THEN
- *
- * Factorize columns k:k+kb-1 of A and use blocked code to
- * update columns k+kb:n
- *
- CALL ZLAHEF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, E( K ),
- $ IPIV( K ), WORK, LDWORK, IINFO )
-
-
- ELSE
- *
- * Use unblocked code to factorize columns k:n of A
- *
- CALL ZHETF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ),
- $ IPIV( K ), IINFO )
- KB = N - K + 1
- *
- END IF
- *
- * Set INFO on the first occurrence of a zero pivot
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + K - 1
- *
- * Adjust IPIV
- *
- DO I = K, K + KB - 1
- IF( IPIV( I ).GT.0 ) THEN
- IPIV( I ) = IPIV( I ) + K - 1
- ELSE
- IPIV( I ) = IPIV( I ) - K + 1
- END IF
- END DO
- *
- * Apply permutations to the leading panel 1:k-1
- *
- * Read IPIV from the last block factored, i.e.
- * indices k:k+kb-1 and apply row permutations to the
- * first k-1 colunms 1:k-1 before that block
- * (We can do the simple loop over IPIV with increment 1,
- * since the ABS value of IPIV( I ) represents the row index
- * of the interchange with row i in both 1x1 and 2x2 pivot cases)
- *
- IF( K.GT.1 ) THEN
- DO I = K, ( K + KB - 1 ), 1
- IP = ABS( IPIV( I ) )
- IF( IP.NE.I ) THEN
- CALL ZSWAP( K-1, A( I, 1 ), LDA,
- $ A( IP, 1 ), LDA )
- END IF
- END DO
- END IF
- *
- * Increase K and return to the start of the main loop
- *
- K = K + KB
- GO TO 20
- *
- * This label is the exit from main loop over K increasing
- * from 1 to N in steps of KB
- *
- 35 CONTINUE
- *
- * End Lower
- *
- END IF
- *
- WORK( 1 ) = LWKOPT
- RETURN
- *
- * End of ZHETRF_RK
- *
- END
|