|
- *> \brief <b> ZHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZHBEVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
- * VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
- * IWORK, IFAIL, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE, UPLO
- * INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
- * DOUBLE PRECISION ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER IFAIL( * ), IWORK( * )
- * DOUBLE PRECISION RWORK( * ), W( * )
- * COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHBEVX computes selected eigenvalues and, optionally, eigenvectors
- *> of a complex Hermitian band matrix A. Eigenvalues and eigenvectors
- *> can be selected by specifying either a range of values or a range of
- *> indices for the desired eigenvalues.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found;
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found;
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix A, stored in the first KD+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *>
- *> On exit, AB is overwritten by values generated during the
- *> reduction to tridiagonal form.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD + 1.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDQ, N)
- *> If JOBZ = 'V', the N-by-N unitary matrix used in the
- *> reduction to tridiagonal form.
- *> If JOBZ = 'N', the array Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. If JOBZ = 'V', then
- *> LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is DOUBLE PRECISION
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is DOUBLE PRECISION
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is DOUBLE PRECISION
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing AB to tridiagonal form.
- *>
- *> Eigenvalues will be computed most accurately when ABSTOL is
- *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
- *> If this routine returns with INFO>0, indicating that some
- *> eigenvectors did not converge, try setting ABSTOL to
- *> 2*DLAMCH('S').
- *>
- *> See "Computing Small Singular Values of Bidiagonal Matrices
- *> with Guaranteed High Relative Accuracy," by Demmel and
- *> Kahan, LAPACK Working Note #3.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> The first M elements contain the selected eigenvalues in
- *> ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> If an eigenvector fails to converge, then that column of Z
- *> contains the latest approximation to the eigenvector, and the
- *> index of the eigenvector is returned in IFAIL.
- *> If JOBZ = 'N', then Z is not referenced.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (7*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (N)
- *> If JOBZ = 'V', then if INFO = 0, the first M elements of
- *> IFAIL are zero. If INFO > 0, then IFAIL contains the
- *> indices of the eigenvectors that failed to converge.
- *> If JOBZ = 'N', then IFAIL is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, then i eigenvectors failed to converge.
- *> Their indices are stored in array IFAIL.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHEReigen
- *
- * =====================================================================
- SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
- $ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
- $ IWORK, IFAIL, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE, UPLO
- INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
- DOUBLE PRECISION ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER IFAIL( * ), IWORK( * )
- DOUBLE PRECISION RWORK( * ), W( * )
- COMPLEX*16 AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
- $ Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
- $ CONE = ( 1.0D0, 0.0D0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
- CHARACTER ORDER
- INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
- $ INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
- $ J, JJ, NSPLIT
- DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
- $ SIGMA, SMLNUM, TMP1, VLL, VUU
- COMPLEX*16 CTMP1
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANHB
- EXTERNAL LSAME, DLAMCH, ZLANHB
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZCOPY,
- $ ZGEMV, ZHBTRD, ZLACPY, ZLASCL, ZSTEIN, ZSTEQR,
- $ ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- LOWER = LSAME( UPLO, 'L' )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( KD.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -7
- ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -11
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -12
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -13
- END IF
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
- $ INFO = -18
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZHBEVX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- M = 1
- IF( LOWER ) THEN
- CTMP1 = AB( 1, 1 )
- ELSE
- CTMP1 = AB( KD+1, 1 )
- END IF
- TMP1 = DBLE( CTMP1 )
- IF( VALEIG ) THEN
- IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
- $ M = 0
- END IF
- IF( M.EQ.1 ) THEN
- W( 1 ) = DBLE( CTMP1 )
- IF( WANTZ )
- $ Z( 1, 1 ) = CONE
- END IF
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ISCALE = 0
- ABSTLL = ABSTOL
- IF( VALEIG ) THEN
- VLL = VL
- VUU = VU
- ELSE
- VLL = ZERO
- VUU = ZERO
- END IF
- ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- IF( LOWER ) THEN
- CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
- ELSE
- CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
- END IF
- IF( ABSTOL.GT.0 )
- $ ABSTLL = ABSTOL*SIGMA
- IF( VALEIG ) THEN
- VLL = VL*SIGMA
- VUU = VU*SIGMA
- END IF
- END IF
- *
- * Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
- *
- INDD = 1
- INDE = INDD + N
- INDRWK = INDE + N
- INDWRK = 1
- CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
- $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
- *
- * If all eigenvalues are desired and ABSTOL is less than or equal
- * to zero, then call DSTERF or ZSTEQR. If this fails for some
- * eigenvalue, then try DSTEBZ.
- *
- TEST = .FALSE.
- IF (INDEIG) THEN
- IF (IL.EQ.1 .AND. IU.EQ.N) THEN
- TEST = .TRUE.
- END IF
- END IF
- IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
- CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
- INDEE = INDRWK + 2*N
- IF( .NOT.WANTZ ) THEN
- CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
- CALL DSTERF( N, W, RWORK( INDEE ), INFO )
- ELSE
- CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
- CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
- CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
- $ RWORK( INDRWK ), INFO )
- IF( INFO.EQ.0 ) THEN
- DO 10 I = 1, N
- IFAIL( I ) = 0
- 10 CONTINUE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- M = N
- GO TO 30
- END IF
- INFO = 0
- END IF
- *
- * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
- *
- IF( WANTZ ) THEN
- ORDER = 'B'
- ELSE
- ORDER = 'E'
- END IF
- INDIBL = 1
- INDISP = INDIBL + N
- INDIWK = INDISP + N
- CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
- $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
- $ IWORK( INDIWK ), INFO )
- *
- IF( WANTZ ) THEN
- CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
- $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
- *
- * Apply unitary matrix used in reduction to tridiagonal
- * form to eigenvectors returned by ZSTEIN.
- *
- DO 20 J = 1, M
- CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
- CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
- $ Z( 1, J ), 1 )
- 20 CONTINUE
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- 30 CONTINUE
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = M
- ELSE
- IMAX = INFO - 1
- END IF
- CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- * If eigenvalues are not in order, then sort them, along with
- * eigenvectors.
- *
- IF( WANTZ ) THEN
- DO 50 J = 1, M - 1
- I = 0
- TMP1 = W( J )
- DO 40 JJ = J + 1, M
- IF( W( JJ ).LT.TMP1 ) THEN
- I = JJ
- TMP1 = W( JJ )
- END IF
- 40 CONTINUE
- *
- IF( I.NE.0 ) THEN
- ITMP1 = IWORK( INDIBL+I-1 )
- W( I ) = W( J )
- IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
- W( J ) = TMP1
- IWORK( INDIBL+J-1 ) = ITMP1
- CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- IF( INFO.NE.0 ) THEN
- ITMP1 = IFAIL( I )
- IFAIL( I ) = IFAIL( J )
- IFAIL( J ) = ITMP1
- END IF
- END IF
- 50 CONTINUE
- END IF
- *
- RETURN
- *
- * End of ZHBEVX
- *
- END
|