|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
-
- /* Subroutine */ int zgeqp3rk_(integer *m, integer *n, integer *nrhs, integer
- *kmax, doublereal *abstol, doublereal *reltol, doublecomplex *a,
- integer *lda, integer *k, doublereal *maxc2nrmk, doublereal *
- relmaxc2nrmk, integer *jpiv, doublecomplex *tau, doublecomplex *work,
- integer *lwork, doublereal *rwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1, d__2;
- doublecomplex z__1;
-
- /* Local variables */
- doublereal maxc2nrm;
- logical done;
- extern /* Subroutine */ int zlaqp2rk_(integer *, integer *, integer *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, doublecomplex *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublecomplex *, doublereal *,
- doublereal *, doublecomplex *, integer *), zlaqp3rk_(integer *,
- integer *, integer *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, doublecomplex *, integer *,
- logical *, integer *, doublereal *, doublereal *, integer *,
- doublecomplex *, doublereal *, doublereal *, doublecomplex *,
- doublecomplex *, integer *, integer *, integer *);
- integer jmax, j, jmaxc2nrm, jmaxb, nbmin, iinfo, n_sub__, minmn;
- doublereal myhugeval;
- integer jb;
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
- integer nb, kf;
- extern doublereal dlamch_(char *);
- extern integer idamax_(integer *, doublereal *, integer *);
- integer nx;
- doublereal safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern logical disnan_(doublereal *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer kp1, lwkopt;
- logical lquery;
- integer jbf;
- doublereal eps;
- integer iws, ioffset;
-
-
- /* -- LAPACK computational routine -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
-
-
- /* ===================================================================== */
-
-
- /* Test input arguments */
- /* ==================== */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --jpiv;
- --tau;
- --work;
- --rwork;
- --iwork;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*kmax < 0) {
- *info = -4;
- } else if (disnan_(abstol)) {
- *info = -5;
- } else if (disnan_(reltol)) {
- *info = -6;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -8;
- }
-
- /* If the input parameters M, N, NRHS, KMAX, LDA are valid: */
- /* a) Test the input workspace size LWORK for the minimum */
- /* size requirement IWS. */
- /* b) Determine the optimal block size NB and optimal */
- /* workspace size LWKOPT to be returned in WORK(1) */
- /* in case of (1) LWORK < IWS, (2) LQUERY = .TRUE., */
- /* (3) when routine exits. */
- /* Here, IWS is the miminum workspace required for unblocked */
- /* code. */
-
- if (*info == 0) {
- minmn = f2cmin(*m,*n);
- if (minmn == 0) {
- iws = 1;
- lwkopt = 1;
- } else {
-
- /* Minimal workspace size in case of using only unblocked */
- /* BLAS 2 code in ZLAQP2RK. */
- /* 1) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used */
- /* in ZLARF subroutine inside ZLAQP2RK to apply an */
- /* elementary reflector from the left. */
- /* TOTAL_WORK_SIZE = 3*N + NRHS - 1 */
-
- iws = *n + *nrhs - 1;
-
- /* Assign to NB optimal block size. */
-
- nb = ilaenv_(&c__1, "ZGEQP3RK", " ", m, n, &c_n1, &c_n1, (ftnlen)
- 8, (ftnlen)1);
-
- /* A formula for the optimal workspace size in case of using */
- /* both unblocked BLAS 2 in ZLAQP2RK and blocked BLAS 3 code */
- /* in ZLAQP3RK. */
- /* 1) ZGEQP3RK, ZLAQP2RK, ZLAQP3RK: 2*N to store full and */
- /* partial column 2-norms. */
- /* 2) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used */
- /* in ZLARF subroutine to apply an elementary reflector */
- /* from the left. */
- /* 3) ZLAQP3RK: NB*(N+NRHS) to use in the work array F that */
- /* is used to apply a block reflector from */
- /* the left. */
- /* 4) ZLAQP3RK: NB to use in the auxilixary array AUX. */
- /* Sizes (2) and ((3) + (4)) should intersect, therefore */
- /* TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2. */
-
- lwkopt = (*n << 1) + nb * (*n + *nrhs + 1);
- }
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
-
- if (*lwork < iws && ! lquery) {
- *info = -15;
- }
- }
-
- /* NOTE: The optimal workspace size is returned in WORK(1), if */
- /* the input parameters M, N, NRHS, KMAX, LDA are valid. */
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEQP3RK", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
- /* Quick return if possible for M=0 or N=0. */
-
- if (minmn == 0) {
- *k = 0;
- *maxc2nrmk = 0.;
- *relmaxc2nrmk = 0.;
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return 0;
- }
-
- /* ================================================================== */
-
- /* Initialize column pivot array JPIV. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- jpiv[j] = j;
- }
-
- /* ================================================================== */
-
- /* Initialize storage for partial and exact column 2-norms. */
- /* a) The elements WORK(1:N) are used to store partial column */
- /* 2-norms of the matrix A, and may decrease in each computation */
- /* step; initialize to the values of complete columns 2-norms. */
- /* b) The elements WORK(N+1:2*N) are used to store complete column */
- /* 2-norms of the matrix A, they are not changed during the */
- /* computation; initialize the values of complete columns 2-norms. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- rwork[j] = dznrm2_(m, &a[j * a_dim1 + 1], &c__1);
- rwork[*n + j] = rwork[j];
- }
-
- /* ================================================================== */
-
- /* Compute the pivot column index and the maximum column 2-norm */
- /* for the whole original matrix stored in A(1:M,1:N). */
-
- kp1 = idamax_(n, &rwork[1], &c__1);
-
- /* ==================================================================. */
-
- if (disnan_(&maxc2nrm)) {
-
- /* Check if the matrix A contains NaN, set INFO parameter */
- /* to the column number where the first NaN is found and return */
- /* from the routine. */
-
- *k = 0;
- *info = kp1;
-
- /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
-
- *maxc2nrmk = maxc2nrm;
- *relmaxc2nrmk = maxc2nrm;
-
- /* Array TAU is not set and contains undefined elements. */
-
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return 0;
- }
-
- /* =================================================================== */
-
- if (maxc2nrm == 0.) {
-
- /* Check is the matrix A is a zero matrix, set array TAU and */
- /* return from the routine. */
-
- *k = 0;
- *maxc2nrmk = 0.;
- *relmaxc2nrmk = 0.;
-
- i__1 = minmn;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- tau[i__2].r = 0., tau[i__2].i = 0.;
- }
-
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return 0;
-
- }
-
- /* =================================================================== */
-
- myhugeval = dlamch_("Overflow");
-
- if (maxc2nrm > myhugeval) {
-
- /* Check if the matrix A contains +Inf or -Inf, set INFO parameter */
- /* to the column number, where the first +/-Inf is found plus N, */
- /* and continue the computation. */
-
- *info = *n + kp1;
-
- }
-
- /* ================================================================== */
-
- /* Quick return if possible for the case when the first */
- /* stopping criterion is satisfied, i.e. KMAX = 0. */
-
- if (*kmax == 0) {
- *k = 0;
- *maxc2nrmk = maxc2nrm;
- *relmaxc2nrmk = 1.;
- i__1 = minmn;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- tau[i__2].r = 0., tau[i__2].i = 0.;
- }
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return 0;
- }
-
- /* ================================================================== */
-
- eps = dlamch_("Epsilon");
-
- /* Adjust ABSTOL */
-
- if (*abstol >= 0.) {
- safmin = dlamch_("Safe minimum");
- /* Computing MAX */
- d__1 = *abstol, d__2 = safmin * 2.;
- *abstol = f2cmax(d__1,d__2);
- }
-
- /* Adjust RELTOL */
-
- if (*reltol >= 0.) {
- *reltol = f2cmax(*reltol,eps);
- }
-
- /* =================================================================== */
-
- /* JMAX is the maximum index of the column to be factorized, */
- /* which is also limited by the first stopping criterion KMAX. */
-
- jmax = f2cmin(*kmax,minmn);
-
- /* =================================================================== */
-
- /* Quick return if possible for the case when the second or third */
- /* stopping criterion for the whole original matrix is satified, */
- /* i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL */
- /* (which is ONE <= RELTOL). */
-
- if (maxc2nrm <= *abstol || 1. <= *reltol) {
-
- *k = 0;
- *maxc2nrmk = maxc2nrm;
- *relmaxc2nrmk = 1.;
-
- i__1 = minmn;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- tau[i__2].r = 0., tau[i__2].i = 0.;
- }
-
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
- return 0;
- }
-
- /* ================================================================== */
- /* Factorize columns */
- /* ================================================================== */
-
- /* Determine the block size. */
-
- nbmin = 2;
- nx = 0;
-
- if (nb > 1 && nb < minmn) {
-
- /* Determine when to cross over from blocked to unblocked code. */
- /* (for N less than NX, unblocked code should be used). */
-
- /* Computing MAX */
- i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQP3RK", " ", m, n, &c_n1, &c_n1, (
- ftnlen)8, (ftnlen)1);
- nx = f2cmax(i__1,i__2);
-
- if (nx < minmn) {
-
- /* Determine if workspace is large enough for blocked code. */
-
- if (*lwork < lwkopt) {
-
- /* Not enough workspace to use optimal block size that */
- /* is currently stored in NB. */
- /* Reduce NB and determine the minimum value of NB. */
-
- nb = (*lwork - (*n << 1)) / (*n + 1);
- /* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQP3RK", " ", m, n, &c_n1,
- &c_n1, (ftnlen)8, (ftnlen)1);
- nbmin = f2cmax(i__1,i__2);
-
- }
- }
- }
-
- /* ================================================================== */
-
- /* DONE is the boolean flag to rerpresent the case when the */
- /* factorization completed in the block factorization routine, */
- /* before the end of the block. */
-
- done = FALSE_;
-
- /* J is the column index. */
-
- j = 1;
-
- /* (1) Use blocked code initially. */
-
- /* JMAXB is the maximum column index of the block, when the */
- /* blocked code is used, is also limited by the first stopping */
- /* criterion KMAX. */
-
- /* Computing MIN */
- i__1 = *kmax, i__2 = minmn - nx;
- jmaxb = f2cmin(i__1,i__2);
-
- if (nb >= nbmin && nb < jmax && jmaxb > 0) {
-
- /* Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here: */
- /* J is the column index of a column block; */
- /* JB is the column block size to pass to block factorization */
- /* routine in a loop step; */
- /* JBF is the number of columns that were actually factorized */
- /* that was returned by the block factorization routine */
- /* in a loop step, JBF <= JB; */
- /* N_SUB is the number of columns in the submatrix; */
- /* IOFFSET is the number of rows that should not be factorized. */
-
- while(j <= jmaxb) {
-
- /* Computing MIN */
- i__1 = nb, i__2 = jmaxb - j + 1;
- jb = f2cmin(i__1,i__2);
- n_sub__ = *n - j + 1;
- ioffset = j - 1;
-
- /* Factorize JB columns among the columns A(J:N). */
-
- i__1 = *n + *nrhs - j + 1;
- zlaqp3rk_(m, &n_sub__, nrhs, &ioffset, &jb, abstol, reltol, &kp1,
- &maxc2nrm, &a[j * a_dim1 + 1], lda, &done, &jbf,
- maxc2nrmk, relmaxc2nrmk, &jpiv[j], &tau[j], &rwork[j], &
- rwork[*n + j], &work[1], &work[jb + 1], &i__1, &iwork[1],
- &iinfo);
-
- /* Set INFO on the first occurence of Inf. */
-
- if (iinfo > n_sub__ && *info == 0) {
- *info = (ioffset << 1) + iinfo;
- }
-
- if (done) {
-
- /* Either the submatrix is zero before the end of the */
- /* column block, or ABSTOL or RELTOL criterion is */
- /* satisfied before the end of the column block, we can */
- /* return from the routine. Perform the following before */
- /* returning: */
- /* a) Set the number of factorized columns K, */
- /* K = IOFFSET + JBF from the last call of blocked */
- /* routine. */
- /* NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned */
- /* by the block factorization routine; */
- /* 2) The remaining TAUs are set to ZERO by the */
- /* block factorization routine. */
-
- *k = ioffset + jbf;
-
- /* Set INFO on the first occurrence of NaN, NaN takes */
- /* prcedence over Inf. */
-
- if (iinfo <= n_sub__ && iinfo > 0) {
- *info = ioffset + iinfo;
- }
-
- /* Return from the routine. */
-
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
-
- return 0;
-
- }
-
- j += jbf;
-
- }
-
- }
-
- /* Use unblocked code to factor the last or only block. */
- /* J = JMAX+1 means we factorized the maximum possible number of */
- /* columns, that is in ELSE clause we need to compute */
- /* the MAXC2NORM and RELMAXC2NORM to return after we processed */
- /* the blocks. */
-
- if (j <= jmax) {
-
- /* N_SUB is the number of columns in the submatrix; */
- /* IOFFSET is the number of rows that should not be factorized. */
-
- n_sub__ = *n - j + 1;
- ioffset = j - 1;
-
- i__1 = jmax - j + 1;
- zlaqp2rk_(m, &n_sub__, nrhs, &ioffset, &i__1, abstol, reltol, &kp1, &
- maxc2nrm, &a[j * a_dim1 + 1], lda, &kf, maxc2nrmk,
- relmaxc2nrmk, &jpiv[j], &tau[j], &rwork[j], &rwork[*n + j], &
- work[1], &iinfo);
-
- /* ABSTOL or RELTOL criterion is satisfied when the number of */
- /* the factorized columns KF is smaller then the number */
- /* of columns JMAX-J+1 supplied to be factorized by the */
- /* unblocked routine, we can return from */
- /* the routine. Perform the following before returning: */
- /* a) Set the number of factorized columns K, */
- /* b) MAXC2NRMK and RELMAXC2NRMK are returned by the */
- /* unblocked factorization routine above. */
-
- *k = j - 1 + kf;
-
- /* Set INFO on the first exception occurence. */
-
- /* Set INFO on the first exception occurence of Inf or NaN, */
- /* (NaN takes precedence over Inf). */
-
- if (iinfo > n_sub__ && *info == 0) {
- *info = (ioffset << 1) + iinfo;
- } else if (iinfo <= n_sub__ && iinfo > 0) {
- *info = ioffset + iinfo;
- }
-
- } else {
-
- /* Compute the return values for blocked code. */
-
- /* Set the number of factorized columns if the unblocked routine */
- /* was not called. */
-
- *k = jmax;
-
- /* If there exits a residual matrix after the blocked code: */
- /* 1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the */
- /* residual matrix, otherwise set them to ZERO; */
- /* 2) Set TAU(K+1:MINMN) to ZERO. */
-
- if (*k < minmn) {
- i__1 = *n - *k;
- jmaxc2nrm = *k + idamax_(&i__1, &rwork[*k + 1], &c__1);
- *maxc2nrmk = rwork[jmaxc2nrm];
- if (*k == 0) {
- *relmaxc2nrmk = 1.;
- } else {
- *relmaxc2nrmk = *maxc2nrmk / maxc2nrm;
- }
-
- i__1 = minmn;
- for (j = *k + 1; j <= i__1; ++j) {
- i__2 = j;
- tau[i__2].r = 0., tau[i__2].i = 0.;
- }
-
- } else {
- *maxc2nrmk = 0.;
- *relmaxc2nrmk = 0.;
-
- }
-
- /* END IF( J.LE.JMAX ) THEN */
-
- }
-
- z__1.r = (doublereal) lwkopt, z__1.i = 0.;
- work[1].r = z__1.r, work[1].i = z__1.i;
-
- return 0;
-
- /* End of ZGEQP3RK */
-
- } /* zgeqp3rk_ */
|