|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
- static integer c__1 = 1;
- static integer c__0 = 0;
-
- /* Subroutine */ int zgedmd_(char *jobs, char *jobz, char *jobr, char *jobf,
- integer *whtsvd, integer *m, integer *n, doublecomplex *x, integer *
- ldx, doublecomplex *y, integer *ldy, integer *nrnk, doublereal *tol,
- integer *k, doublecomplex *eigs, doublecomplex *z__, integer *ldz,
- doublereal *res, doublecomplex *b, integer *ldb, doublecomplex *w,
- integer *ldw, doublecomplex *s, integer *lds, doublecomplex *zwork,
- integer *lzwork, doublereal *rwork, integer *lrwork, integer *iwork,
- integer *liwork, integer *info)
- {
- /* System generated locals */
- integer x_dim1, x_offset, y_dim1, y_offset, z_dim1, z_offset, b_dim1,
- b_offset, w_dim1, w_offset, s_dim1, s_offset, i__1, i__2, i__3,
- i__4, i__5;
- doublereal d__1, d__2;
- doublecomplex z__1, z__2;
-
- /* Local variables */
- doublecomplex zone;
- doublereal zero, ssum;
- integer info1, info2;
- doublereal xscl1, xscl2;
- integer i__, j;
- doublereal scale;
- extern logical lsame_(char *, char *);
- logical badxy;
- doublereal small;
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
- char jobzl[1];
- extern /* Subroutine */ int zgeev_(char *, char *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, integer *);
- logical wntex;
- doublecomplex zzero;
- extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
- char *);
- extern logical disnan_(doublereal *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- char t_or_n__[1];
- extern /* Subroutine */ int zdscal_(integer *, doublereal *,
- doublecomplex *, integer *), zgesdd_(char *, integer *, integer *,
- doublecomplex *, integer *, doublereal *, doublecomplex *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, integer *, integer *), zlascl_(char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- integer *, doublecomplex *, integer *, integer *);
- extern integer izamax_(integer *, doublecomplex *, integer *);
- logical sccolx, sccoly;
- integer lwrsdd, mwrsdd;
- extern /* Subroutine */ int zgesvd_(char *, char *, integer *, integer *,
- doublecomplex *, integer *, doublereal *, doublecomplex *,
- integer *, doublecomplex *, integer *, doublecomplex *, integer *,
- doublereal *, integer *), zlacpy_(char *,
- integer *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *);
- integer iminwr;
- logical wntref, wntvec;
- doublereal rootsc;
- integer lwrkev, mlwork, mwrkev, numrnk, olwork, lwrsvd, mwrsvd, mlrwrk;
- logical lquery, wntres;
- char jsvopt[1];
- integer lwrsvj, mwrsvj;
- doublereal rdummy[2];
- extern /* Subroutine */ int zgejsv_(char *, char *, char *, char *, char *
- , char *, integer *, integer *, doublecomplex *, integer *,
- doublereal *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, integer *, doublereal *, integer *,
- integer *, integer *), zlassq_(integer *, doublecomplex *, integer *,
- doublereal *, doublereal *), mecago_();
- integer lwrsvq, mwrsvq;
- doublereal ofl, one;
- extern /* Subroutine */ int zgesvdq_(char *, char *, char *, char *, char
- *, integer *, integer *, doublecomplex *, integer *, doublereal *,
- doublecomplex *, integer *, doublecomplex *, integer *, integer *
- , integer *, integer *, doublecomplex *, integer *, doublereal *,
- integer *, integer *);
-
- /* March 2023 */
- /* ..... */
- /* USE iso_fortran_env */
- /* INTEGER, PARAMETER :: WP = real64 */
- /* ..... */
- /* Scalar arguments */
- /* Array arguments */
- /* ............................................................ */
- /* Purpose */
- /* ======= */
- /* ZGEDMD computes the Dynamic Mode Decomposition (DMD) for */
- /* a pair of data snapshot matrices. For the input matrices */
- /* X and Y such that Y = A*X with an unaccessible matrix */
- /* A, ZGEDMD computes a certain number of Ritz pairs of A using */
- /* the standard Rayleigh-Ritz extraction from a subspace of */
- /* range(X) that is determined using the leading left singular */
- /* vectors of X. Optionally, ZGEDMD returns the residuals */
- /* of the computed Ritz pairs, the information needed for */
- /* a refinement of the Ritz vectors, or the eigenvectors of */
- /* the Exact DMD. */
- /* For further details see the references listed */
- /* below. For more details of the implementation see [3]. */
-
- /* References */
- /* ========== */
- /* [1] P. Schmid: Dynamic mode decomposition of numerical */
- /* and experimental data, */
- /* Journal of Fluid Mechanics 656, 5-28, 2010. */
- /* [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal */
- /* decompositions: analysis and enhancements, */
- /* SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. */
- /* [3] Z. Drmac: A LAPACK implementation of the Dynamic */
- /* Mode Decomposition I. Technical report. AIMDyn Inc. */
- /* and LAPACK Working Note 298. */
- /* [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. */
- /* Brunton, N. Kutz: On Dynamic Mode Decomposition: */
- /* Theory and Applications, Journal of Computational */
- /* Dynamics 1(2), 391 -421, 2014. */
-
- /* ...................................................................... */
- /* Developed and supported by: */
- /* =========================== */
- /* Developed and coded by Zlatko Drmac, Faculty of Science, */
- /* University of Zagreb; drmac@math.hr */
- /* In cooperation with */
- /* AIMdyn Inc., Santa Barbara, CA. */
- /* and supported by */
- /* - DARPA SBIR project "Koopman Operator-Based Forecasting */
- /* for Nonstationary Processes from Near-Term, Limited */
- /* Observational Data" Contract No: W31P4Q-21-C-0007 */
- /* - DARPA PAI project "Physics-Informed Machine Learning */
- /* Methodologies" Contract No: HR0011-18-9-0033 */
- /* - DARPA MoDyL project "A Data-Driven, Operator-Theoretic */
- /* Framework for Space-Time Analysis of Process Dynamics" */
- /* Contract No: HR0011-16-C-0116 */
- /* Any opinions, findings and conclusions or recommendations */
- /* expressed in this material are those of the author and */
- /* do not necessarily reflect the views of the DARPA SBIR */
- /* Program Office */
- /* ============================================================ */
- /* Distribution Statement A: */
- /* Approved for Public Release, Distribution Unlimited. */
- /* Cleared by DARPA on September 29, 2022 */
- /* ============================================================ */
- /* ............................................................ */
- /* Arguments */
- /* ========= */
- /* JOBS (input) CHARACTER*1 */
- /* Determines whether the initial data snapshots are scaled */
- /* by a diagonal matrix. */
- /* 'S' :: The data snapshots matrices X and Y are multiplied */
- /* with a diagonal matrix D so that X*D has unit */
- /* nonzero columns (in the Euclidean 2-norm) */
- /* 'C' :: The snapshots are scaled as with the 'S' option. */
- /* If it is found that an i-th column of X is zero */
- /* vector and the corresponding i-th column of Y is */
- /* non-zero, then the i-th column of Y is set to */
- /* zero and a warning flag is raised. */
- /* 'Y' :: The data snapshots matrices X and Y are multiplied */
- /* by a diagonal matrix D so that Y*D has unit */
- /* nonzero columns (in the Euclidean 2-norm) */
- /* 'N' :: No data scaling. */
- /* ..... */
- /* JOBZ (input) CHARACTER*1 */
- /* Determines whether the eigenvectors (Koopman modes) will */
- /* be computed. */
- /* 'V' :: The eigenvectors (Koopman modes) will be computed */
- /* and returned in the matrix Z. */
- /* See the description of Z. */
- /* 'F' :: The eigenvectors (Koopman modes) will be returned */
- /* in factored form as the product X(:,1:K)*W, where X */
- /* contains a POD basis (leading left singular vectors */
- /* of the data matrix X) and W contains the eigenvectors */
- /* of the corresponding Rayleigh quotient. */
- /* See the descriptions of K, X, W, Z. */
- /* 'N' :: The eigenvectors are not computed. */
- /* ..... */
- /* JOBR (input) CHARACTER*1 */
- /* Determines whether to compute the residuals. */
- /* 'R' :: The residuals for the computed eigenpairs will be */
- /* computed and stored in the array RES. */
- /* See the description of RES. */
- /* For this option to be legal, JOBZ must be 'V'. */
- /* 'N' :: The residuals are not computed. */
- /* ..... */
- /* JOBF (input) CHARACTER*1 */
- /* Specifies whether to store information needed for post- */
- /* processing (e.g. computing refined Ritz vectors) */
- /* 'R' :: The matrix needed for the refinement of the Ritz */
- /* vectors is computed and stored in the array B. */
- /* See the description of B. */
- /* 'E' :: The unscaled eigenvectors of the Exact DMD are */
- /* computed and returned in the array B. See the */
- /* description of B. */
- /* 'N' :: No eigenvector refinement data is computed. */
- /* ..... */
- /* WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } */
- /* Allows for a selection of the SVD algorithm from the */
- /* LAPACK library. */
- /* 1 :: ZGESVD (the QR SVD algorithm) */
- /* 2 :: ZGESDD (the Divide and Conquer algorithm; if enough */
- /* workspace available, this is the fastest option) */
- /* 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4 */
- /* are the most accurate options) */
- /* 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 */
- /* are the most accurate options) */
- /* For the four methods above, a significant difference in */
- /* the accuracy of small singular values is possible if */
- /* the snapshots vary in norm so that X is severely */
- /* ill-conditioned. If small (smaller than EPS*||X||) */
- /* singular values are of interest and JOBS=='N', then */
- /* the options (3, 4) give the most accurate results, where */
- /* the option 4 is slightly better and with stronger */
- /* theoretical background. */
- /* If JOBS=='S', i.e. the columns of X will be normalized, */
- /* then all methods give nearly equally accurate results. */
- /* ..... */
- /* M (input) INTEGER, M>= 0 */
- /* The state space dimension (the row dimension of X, Y). */
- /* ..... */
- /* N (input) INTEGER, 0 <= N <= M */
- /* The number of data snapshot pairs */
- /* (the number of columns of X and Y). */
- /* ..... */
- /* X (input/output) COMPLEX(KIND=WP) M-by-N array */
- /* > On entry, X contains the data snapshot matrix X. It is */
- /* assumed that the column norms of X are in the range of */
- /* the normalized floating point numbers. */
- /* < On exit, the leading K columns of X contain a POD basis, */
- /* i.e. the leading K left singular vectors of the input */
- /* data matrix X, U(:,1:K). All N columns of X contain all */
- /* left singular vectors of the input matrix X. */
- /* See the descriptions of K, Z and W. */
- /* ..... */
- /* LDX (input) INTEGER, LDX >= M */
- /* The leading dimension of the array X. */
- /* ..... */
- /* Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array */
- /* > On entry, Y contains the data snapshot matrix Y */
- /* < On exit, */
- /* If JOBR == 'R', the leading K columns of Y contain */
- /* the residual vectors for the computed Ritz pairs. */
- /* See the description of RES. */
- /* If JOBR == 'N', Y contains the original input data, */
- /* scaled according to the value of JOBS. */
- /* ..... */
- /* LDY (input) INTEGER , LDY >= M */
- /* The leading dimension of the array Y. */
- /* ..... */
- /* NRNK (input) INTEGER */
- /* Determines the mode how to compute the numerical rank, */
- /* i.e. how to truncate small singular values of the input */
- /* matrix X. On input, if */
- /* NRNK = -1 :: i-th singular value sigma(i) is truncated */
- /* if sigma(i) <= TOL*sigma(1) */
- /* This option is recommended. */
- /* NRNK = -2 :: i-th singular value sigma(i) is truncated */
- /* if sigma(i) <= TOL*sigma(i-1) */
- /* This option is included for R&D purposes. */
- /* It requires highly accurate SVD, which */
- /* may not be feasible. */
- /* The numerical rank can be enforced by using positive */
- /* value of NRNK as follows: */
- /* 0 < NRNK <= N :: at most NRNK largest singular values */
- /* will be used. If the number of the computed nonzero */
- /* singular values is less than NRNK, then only those */
- /* nonzero values will be used and the actually used */
- /* dimension is less than NRNK. The actual number of */
- /* the nonzero singular values is returned in the variable */
- /* K. See the descriptions of TOL and K. */
- /* ..... */
- /* TOL (input) REAL(KIND=WP), 0 <= TOL < 1 */
- /* The tolerance for truncating small singular values. */
- /* See the description of NRNK. */
- /* ..... */
- /* K (output) INTEGER, 0 <= K <= N */
- /* The dimension of the POD basis for the data snapshot */
- /* matrix X and the number of the computed Ritz pairs. */
- /* The value of K is determined according to the rule set */
- /* by the parameters NRNK and TOL. */
- /* See the descriptions of NRNK and TOL. */
- /* ..... */
- /* EIGS (output) COMPLEX(KIND=WP) N-by-1 array */
- /* The leading K (K<=N) entries of EIGS contain */
- /* the computed eigenvalues (Ritz values). */
- /* See the descriptions of K, and Z. */
- /* ..... */
- /* Z (workspace/output) COMPLEX(KIND=WP) M-by-N array */
- /* If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) */
- /* is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. */
- /* If JOBZ == 'F', then the Z(:,i)'s are given implicitly as */
- /* the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) */
- /* is an eigenvector corresponding to EIGS(i). The columns */
- /* of W(1:k,1:K) are the computed eigenvectors of the */
- /* K-by-K Rayleigh quotient. */
- /* See the descriptions of EIGS, X and W. */
- /* ..... */
- /* LDZ (input) INTEGER , LDZ >= M */
- /* The leading dimension of the array Z. */
- /* ..... */
- /* RES (output) REAL(KIND=WP) N-by-1 array */
- /* RES(1:K) contains the residuals for the K computed */
- /* Ritz pairs, */
- /* RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. */
- /* See the description of EIGS and Z. */
- /* ..... */
- /* B (output) COMPLEX(KIND=WP) M-by-N array. */
- /* IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can */
- /* be used for computing the refined vectors; see further */
- /* details in the provided references. */
- /* If JOBF == 'E', B(1:M,1:K) contains */
- /* A*U(:,1:K)*W(1:K,1:K), which are the vectors from the */
- /* Exact DMD, up to scaling by the inverse eigenvalues. */
- /* If JOBF =='N', then B is not referenced. */
- /* See the descriptions of X, W, K. */
- /* ..... */
- /* LDB (input) INTEGER, LDB >= M */
- /* The leading dimension of the array B. */
- /* ..... */
- /* W (workspace/output) COMPLEX(KIND=WP) N-by-N array */
- /* On exit, W(1:K,1:K) contains the K computed */
- /* eigenvectors of the matrix Rayleigh quotient. */
- /* The Ritz vectors (returned in Z) are the */
- /* product of X (containing a POD basis for the input */
- /* matrix X) and W. See the descriptions of K, S, X and Z. */
- /* W is also used as a workspace to temporarily store the */
- /* right singular vectors of X. */
- /* ..... */
- /* LDW (input) INTEGER, LDW >= N */
- /* The leading dimension of the array W. */
- /* ..... */
- /* S (workspace/output) COMPLEX(KIND=WP) N-by-N array */
- /* The array S(1:K,1:K) is used for the matrix Rayleigh */
- /* quotient. This content is overwritten during */
- /* the eigenvalue decomposition by ZGEEV. */
- /* See the description of K. */
- /* ..... */
- /* LDS (input) INTEGER, LDS >= N */
- /* The leading dimension of the array S. */
- /* ..... */
- /* ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array */
- /* ZWORK is used as complex workspace in the complex SVD, as */
- /* specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing */
- /* the eigenvalues of a Rayleigh quotient. */
- /* If the call to ZGEDMD is only workspace query, then */
- /* ZWORK(1) contains the minimal complex workspace length and */
- /* ZWORK(2) is the optimal complex workspace length. */
- /* Hence, the length of work is at least 2. */
- /* See the description of LZWORK. */
- /* ..... */
- /* LZWORK (input) INTEGER */
- /* The minimal length of the workspace vector ZWORK. */
- /* LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV), */
- /* where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal */
- /* LZWORK_SVD is calculated as follows */
- /* If WHTSVD == 1 :: ZGESVD :: */
- /* LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) */
- /* If WHTSVD == 2 :: ZGESDD :: */
- /* LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) */
- /* If WHTSVD == 3 :: ZGESVDQ :: */
- /* LZWORK_SVD = obtainable by a query */
- /* If WHTSVD == 4 :: ZGEJSV :: */
- /* LZWORK_SVD = obtainable by a query */
- /* If on entry LZWORK = -1, then a workspace query is */
- /* assumed and the procedure only computes the minimal */
- /* and the optimal workspace lengths and returns them in */
- /* LZWORK(1) and LZWORK(2), respectively. */
- /* ..... */
- /* RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array */
- /* On exit, RWORK(1:N) contains the singular values of */
- /* X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). */
- /* If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain */
- /* scaling factor RWORK(N+2)/RWORK(N+1) used to scale X */
- /* and Y to avoid overflow in the SVD of X. */
- /* This may be of interest if the scaling option is off */
- /* and as many as possible smallest eigenvalues are */
- /* desired to the highest feasible accuracy. */
- /* If the call to ZGEDMD is only workspace query, then */
- /* RWORK(1) contains the minimal workspace length. */
- /* See the description of LRWORK. */
- /* ..... */
- /* LRWORK (input) INTEGER */
- /* The minimal length of the workspace vector RWORK. */
- /* LRWORK is calculated as follows: */
- /* LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where */
- /* LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace */
- /* for the SVD subroutine determined by the input parameter */
- /* WHTSVD. */
- /* If WHTSVD == 1 :: ZGESVD :: */
- /* LRWORK_SVD = 5*MIN(M,N) */
- /* If WHTSVD == 2 :: ZGESDD :: */
- /* LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), */
- /* 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) */
- /* If WHTSVD == 3 :: ZGESVDQ :: */
- /* LRWORK_SVD = obtainable by a query */
- /* If WHTSVD == 4 :: ZGEJSV :: */
- /* LRWORK_SVD = obtainable by a query */
- /* If on entry LRWORK = -1, then a workspace query is */
- /* assumed and the procedure only computes the minimal */
- /* real workspace length and returns it in RWORK(1). */
- /* ..... */
- /* IWORK (workspace/output) INTEGER LIWORK-by-1 array */
- /* Workspace that is required only if WHTSVD equals */
- /* 2 , 3 or 4. (See the description of WHTSVD). */
- /* If on entry LWORK =-1 or LIWORK=-1, then the */
- /* minimal length of IWORK is computed and returned in */
- /* IWORK(1). See the description of LIWORK. */
- /* ..... */
- /* LIWORK (input) INTEGER */
- /* The minimal length of the workspace vector IWORK. */
- /* If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 */
- /* If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) */
- /* If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) */
- /* If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) */
- /* If on entry LIWORK = -1, then a workspace query is */
- /* assumed and the procedure only computes the minimal */
- /* and the optimal workspace lengths for ZWORK, RWORK and */
- /* IWORK. See the descriptions of ZWORK, RWORK and IWORK. */
- /* ..... */
- /* INFO (output) INTEGER */
- /* -i < 0 :: On entry, the i-th argument had an */
- /* illegal value */
- /* = 0 :: Successful return. */
- /* = 1 :: Void input. Quick exit (M=0 or N=0). */
- /* = 2 :: The SVD computation of X did not converge. */
- /* Suggestion: Check the input data and/or */
- /* repeat with different WHTSVD. */
- /* = 3 :: The computation of the eigenvalues did not */
- /* converge. */
- /* = 4 :: If data scaling was requested on input and */
- /* the procedure found inconsistency in the data */
- /* such that for some column index i, */
- /* X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set */
- /* to zero if JOBS=='C'. The computation proceeds */
- /* with original or modified data and warning */
- /* flag is set with INFO=4. */
- /* ............................................................. */
- /* ............................................................. */
- /* Parameters */
- /* ~~~~~~~~~~ */
- /* Local scalars */
- /* ~~~~~~~~~~~~~ */
-
- /* Local arrays */
- /* ~~~~~~~~~~~~ */
- /* External functions (BLAS and LAPACK) */
- /* ~~~~~~~~~~~~~~~~~ */
- /* External subroutines (BLAS and LAPACK) */
- /* ~~~~~~~~~~~~~~~~~~~~ */
- /* Intrinsic functions */
- /* ~~~~~~~~~~~~~~~~~~~ */
- /* ............................................................ */
- /* Parameter adjustments */
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
- --eigs;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --res;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- w_dim1 = *ldw;
- w_offset = 1 + w_dim1 * 1;
- w -= w_offset;
- s_dim1 = *lds;
- s_offset = 1 + s_dim1 * 1;
- s -= s_offset;
- --zwork;
- --rwork;
- --iwork;
-
- /* Function Body */
- zero = 0.f;
- one = 1.f;
- zzero.r = 0.f, zzero.i = 0.f;
- zone.r = 1.f, zone.i = 0.f;
-
- /* Test the input arguments */
-
- wntres = lsame_(jobr, "R");
- sccolx = lsame_(jobs, "S") || lsame_(jobs, "C");
- sccoly = lsame_(jobs, "Y");
- wntvec = lsame_(jobz, "V");
- wntref = lsame_(jobf, "R");
- wntex = lsame_(jobf, "E");
- *info = 0;
- lquery = *lzwork == -1 || *liwork == -1 || *lrwork == -1;
-
- if (! (sccolx || sccoly || lsame_(jobs, "N"))) {
- *info = -1;
- } else if (! (wntvec || lsame_(jobz, "N") || lsame_(
- jobz, "F"))) {
- *info = -2;
- } else if (! (wntres || lsame_(jobr, "N")) ||
- wntres && ! wntvec) {
- *info = -3;
- } else if (! (wntref || wntex || lsame_(jobf, "N")))
- {
- *info = -4;
- } else if (! (*whtsvd == 1 || *whtsvd == 2 || *whtsvd == 3 || *whtsvd ==
- 4)) {
- *info = -5;
- } else if (*m < 0) {
- *info = -6;
- } else if (*n < 0 || *n > *m) {
- *info = -7;
- } else if (*ldx < *m) {
- *info = -9;
- } else if (*ldy < *m) {
- *info = -11;
- } else if (! (*nrnk == -2 || *nrnk == -1 || *nrnk >= 1 && *nrnk <= *n)) {
- *info = -12;
- } else if (*tol < zero || *tol >= one) {
- *info = -13;
- } else if (*ldz < *m) {
- *info = -17;
- } else if ((wntref || wntex) && *ldb < *m) {
- *info = -20;
- } else if (*ldw < *n) {
- *info = -22;
- } else if (*lds < *n) {
- *info = -24;
- }
-
- if (*info == 0) {
- /* Compute the minimal and the optimal workspace */
- /* requirements. Simulate running the code and */
- /* determine minimal and optimal sizes of the */
- /* workspace at any moment of the run. */
- if (*n == 0) {
- /* Quick return. All output except K is void. */
- /* INFO=1 signals the void input. */
- /* In case of a workspace query, the default */
- /* minimal workspace lengths are returned. */
- if (lquery) {
- iwork[1] = 1;
- rwork[1] = 1.;
- zwork[1].r = 2., zwork[1].i = 0.;
- zwork[2].r = 2., zwork[2].i = 0.;
- } else {
- *k = 0;
- }
- *info = 1;
- return 0;
- }
- iminwr = 1;
- mlrwrk = f2cmax(1,*n);
- mlwork = 2;
- olwork = 2;
- /* SELECT CASE ( WHTSVD ) */
- if (*whtsvd == 1) {
- /* The following is specified as the minimal */
- /* length of WORK in the definition of ZGESVD: */
- /* MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) */
- /* Computing MAX */
- i__1 = 1, i__2 = (f2cmin(*m,*n) << 1) + f2cmax(*m,*n);
- mwrsvd = f2cmax(i__1,i__2);
- mlwork = f2cmax(mlwork,mwrsvd);
- /* Computing MAX */
- i__1 = mlrwrk, i__2 = *n + f2cmin(*m,*n) * 5;
- mlrwrk = f2cmax(i__1,i__2);
- if (lquery) {
- zgesvd_("O", "S", m, n, &x[x_offset], ldx, &rwork[1], &b[
- b_offset], ldb, &w[w_offset], ldw, &zwork[1], &c_n1,
- rdummy, &info1);
- lwrsvd = (integer) zwork[1].r;
- olwork = f2cmax(olwork,lwrsvd);
- }
- } else if (*whtsvd == 2) {
- /* The following is specified as the minimal */
- /* length of WORK in the definition of ZGESDD: */
- /* MWRSDD = 2*f2cmin(M,N)*f2cmin(M,N)+2*f2cmin(M,N)+f2cmax(M,N). */
- /* RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) */
- /* In LAPACK 3.10.1 RWORK is defined differently. */
- /* Below we take f2cmax over the two versions. */
- /* IMINWR = 8*MIN(M,N) */
- mwrsdd = (f2cmin(*m,*n) << 1) * f2cmin(*m,*n) + (f2cmin(*m,*n) << 1) + f2cmax(
- *m,*n);
- mlwork = f2cmax(mlwork,mwrsdd);
- iminwr = f2cmin(*m,*n) << 3;
- /* Computing MAX */
- /* Computing MAX */
- i__3 = f2cmin(*m,*n) * 5 * f2cmin(*m,*n) + f2cmin(*m,*n) * 7, i__4 = f2cmin(*
- m,*n) * 5 * f2cmin(*m,*n) + f2cmin(*m,*n) * 5, i__3 = f2cmax(i__3,
- i__4), i__4 = (f2cmax(*m,*n) << 1) * f2cmin(*m,*n) + (f2cmin(*m,*n)
- << 1) * f2cmin(*m,*n) + f2cmin(*m,*n);
- i__1 = mlrwrk, i__2 = *n + f2cmax(i__3,i__4);
- mlrwrk = f2cmax(i__1,i__2);
- if (lquery) {
- zgesdd_("O", m, n, &x[x_offset], ldx, &rwork[1], &b[b_offset],
- ldb, &w[w_offset], ldw, &zwork[1], &c_n1, rdummy, &
- iwork[1], &info1);
- /* Computing MAX */
- i__1 = mwrsdd, i__2 = (integer) zwork[1].r;
- lwrsdd = f2cmax(i__1,i__2);
- /* Possible bug in ZGESDD optimal workspace size. */
- olwork = f2cmax(olwork,lwrsdd);
- }
- } else if (*whtsvd == 3) {
- zgesvdq_("H", "P", "N", "R", "R", m, n, &x[x_offset], ldx, &rwork[
- 1], &z__[z_offset], ldz, &w[w_offset], ldw, &numrnk, &
- iwork[1], &c_n1, &zwork[1], &c_n1, rdummy, &c_n1, &info1);
- iminwr = iwork[1];
- mwrsvq = (integer) zwork[2].r;
- mlwork = f2cmax(mlwork,mwrsvq);
- /* Computing MAX */
- i__1 = mlrwrk, i__2 = *n + (integer) rdummy[0];
- mlrwrk = f2cmax(i__1,i__2);
- if (lquery) {
- lwrsvq = (integer) zwork[1].r;
- olwork = f2cmax(olwork,lwrsvq);
- }
- } else if (*whtsvd == 4) {
- *(unsigned char *)jsvopt = 'J';
- zgejsv_("F", "U", jsvopt, "R", "N", "P", m, n, &x[x_offset], ldx,
- &rwork[1], &z__[z_offset], ldz, &w[w_offset], ldw, &zwork[
- 1], &c_n1, rdummy, &c_n1, &iwork[1], &info1);
- iminwr = iwork[1];
- mwrsvj = (integer) zwork[2].r;
- mlwork = f2cmax(mlwork,mwrsvj);
- /* Computing MAX */
- /* Computing MAX */
- i__3 = 7, i__4 = (integer) rdummy[0];
- i__1 = mlrwrk, i__2 = *n + f2cmax(i__3,i__4);
- mlrwrk = f2cmax(i__1,i__2);
- if (lquery) {
- lwrsvj = (integer) zwork[1].r;
- olwork = f2cmax(olwork,lwrsvj);
- }
- /* END SELECT */
- }
- if (wntvec || wntex || lsame_(jobz, "F")) {
- *(unsigned char *)jobzl = 'V';
- } else {
- *(unsigned char *)jobzl = 'N';
- }
- /* Workspace calculation to the ZGEEV call */
- /* Computing MAX */
- i__1 = 1, i__2 = *n << 1;
- mwrkev = f2cmax(i__1,i__2);
- mlwork = f2cmax(mlwork,mwrkev);
- /* Computing MAX */
- i__1 = mlrwrk, i__2 = *n + (*n << 1);
- mlrwrk = f2cmax(i__1,i__2);
- if (lquery) {
- zgeev_("N", jobzl, n, &s[s_offset], lds, &eigs[1], &w[w_offset],
- ldw, &w[w_offset], ldw, &zwork[1], &c_n1, &rwork[1], &
- info1);
- lwrkev = (integer) zwork[1].r;
- olwork = f2cmax(olwork,lwrkev);
- }
-
- if (*liwork < iminwr && ! lquery) {
- *info = -30;
- }
- if (*lrwork < mlrwrk && ! lquery) {
- *info = -28;
- }
- if (*lzwork < mlwork && ! lquery) {
- *info = -26;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEDMD", &i__1);
- return 0;
- } else if (lquery) {
- /* Return minimal and optimal workspace sizes */
- iwork[1] = iminwr;
- rwork[1] = (doublereal) mlrwrk;
- zwork[1].r = (doublereal) mlwork, zwork[1].i = 0.;
- zwork[2].r = (doublereal) olwork, zwork[2].i = 0.;
- return 0;
- }
- /* ............................................................ */
-
- ofl = dlamch_("O");
- small = dlamch_("S");
- badxy = FALSE_;
-
- /* <1> Optional scaling of the snapshots (columns of X, Y) */
- /* ========================================================== */
- if (sccolx) {
- /* The columns of X will be normalized. */
- /* To prevent overflows, the column norms of X are */
- /* carefully computed using ZLASSQ. */
- *k = 0;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* WORK(i) = DZNRM2( M, X(1,i), 1 ) */
- scale = zero;
- zlassq_(m, &x[i__ * x_dim1 + 1], &c__1, &scale, &ssum);
- if (disnan_(&scale) || disnan_(&ssum)) {
- *k = 0;
- *info = -8;
- i__2 = -(*info);
- xerbla_("ZGEDMD", &i__2);
- }
- if (scale != zero && ssum != zero) {
- rootsc = sqrt(ssum);
- if (scale >= ofl / rootsc) {
- /* Norm of X(:,i) overflows. First, X(:,i) */
- /* is scaled by */
- /* ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. */
- /* Next, the norm of X(:,i) is stored without */
- /* overflow as RWORK(i) = - SCALE * (ROOTSC/M), */
- /* the minus sign indicating the 1/M factor. */
- /* Scaling is performed without overflow, and */
- /* underflow may occur in the smallest entries */
- /* of X(:,i). The relative backward and forward */
- /* errors are small in the ell_2 norm. */
- d__1 = one / rootsc;
- zlascl_("G", &c__0, &c__0, &scale, &d__1, m, &c__1, &x[
- i__ * x_dim1 + 1], ldx, &info2);
- rwork[i__] = -scale * (rootsc / (doublereal) (*m));
- } else {
- /* X(:,i) will be scaled to unit 2-norm */
- rwork[i__] = scale * rootsc;
- zlascl_("G", &c__0, &c__0, &rwork[i__], &one, m, &c__1, &
- x[i__ * x_dim1 + 1], ldx, &info2);
- /* X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC */
- /* LAPACK CALL */
- }
- } else {
- rwork[i__] = zero;
- ++(*k);
- }
- }
- if (*k == *n) {
- /* All columns of X are zero. Return error code -8. */
- /* (the 8th input variable had an illegal value) */
- *k = 0;
- *info = -8;
- i__1 = -(*info);
- xerbla_("ZGEDMD", &i__1);
- return 0;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Now, apply the same scaling to the columns of Y. */
- if (rwork[i__] > zero) {
- d__1 = one / rwork[i__];
- zdscal_(m, &d__1, &y[i__ * y_dim1 + 1], &c__1);
- /* Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC */
- /* BLAS CALL */
- } else if (rwork[i__] < zero) {
- d__1 = -rwork[i__];
- d__2 = one / (doublereal) (*m);
- zlascl_("G", &c__0, &c__0, &d__1, &d__2, m, &c__1, &y[i__ *
- y_dim1 + 1], ldy, &info2);
- /* LAPACK C */
- } else if (z_abs(&y[izamax_(m, &y[i__ * y_dim1 + 1], &c__1) + i__
- * y_dim1]) != zero) {
- /* X(:,i) is zero vector. For consistency, */
- /* Y(:,i) should also be zero. If Y(:,i) is not */
- /* zero, then the data might be inconsistent or */
- /* corrupted. If JOBS == 'C', Y(:,i) is set to */
- /* zero and a warning flag is raised. */
- /* The computation continues but the */
- /* situation will be reported in the output. */
- badxy = TRUE_;
- if (lsame_(jobs, "C")) {
- zdscal_(m, &zero, &y[i__ * y_dim1 + 1], &c__1);
- }
- /* BLAS CALL */
- }
- }
- }
-
- if (sccoly) {
- /* The columns of Y will be normalized. */
- /* To prevent overflows, the column norms of Y are */
- /* carefully computed using ZLASSQ. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* RWORK(i) = DZNRM2( M, Y(1,i), 1 ) */
- scale = zero;
- zlassq_(m, &y[i__ * y_dim1 + 1], &c__1, &scale, &ssum);
- if (disnan_(&scale) || disnan_(&ssum)) {
- *k = 0;
- *info = -10;
- i__2 = -(*info);
- xerbla_("ZGEDMD", &i__2);
- }
- if (scale != zero && ssum != zero) {
- rootsc = sqrt(ssum);
- if (scale >= ofl / rootsc) {
- /* Norm of Y(:,i) overflows. First, Y(:,i) */
- /* is scaled by */
- /* ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. */
- /* Next, the norm of Y(:,i) is stored without */
- /* overflow as RWORK(i) = - SCALE * (ROOTSC/M), */
- /* the minus sign indicating the 1/M factor. */
- /* Scaling is performed without overflow, and */
- /* underflow may occur in the smallest entries */
- /* of Y(:,i). The relative backward and forward */
- /* errors are small in the ell_2 norm. */
- d__1 = one / rootsc;
- zlascl_("G", &c__0, &c__0, &scale, &d__1, m, &c__1, &y[
- i__ * y_dim1 + 1], ldy, &info2);
- rwork[i__] = -scale * (rootsc / (doublereal) (*m));
- } else {
- /* Y(:,i) will be scaled to unit 2-norm */
- rwork[i__] = scale * rootsc;
- zlascl_("G", &c__0, &c__0, &rwork[i__], &one, m, &c__1, &
- y[i__ * y_dim1 + 1], ldy, &info2);
- /* Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC */
- /* LAPAC */
- }
- } else {
- rwork[i__] = zero;
- }
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Now, apply the same scaling to the columns of X. */
- if (rwork[i__] > zero) {
- d__1 = one / rwork[i__];
- zdscal_(m, &d__1, &x[i__ * x_dim1 + 1], &c__1);
- /* X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC */
- /* BLAS CALL */
- } else if (rwork[i__] < zero) {
- d__1 = -rwork[i__];
- d__2 = one / (doublereal) (*m);
- zlascl_("G", &c__0, &c__0, &d__1, &d__2, m, &c__1, &x[i__ *
- x_dim1 + 1], ldx, &info2);
- /* LAPACK C */
- } else if (z_abs(&x[izamax_(m, &x[i__ * x_dim1 + 1], &c__1) + i__
- * x_dim1]) != zero) {
- /* Y(:,i) is zero vector. If X(:,i) is not */
- /* zero, then a warning flag is raised. */
- /* The computation continues but the */
- /* situation will be reported in the output. */
- badxy = TRUE_;
- }
- }
- }
-
- /* <2> SVD of the data snapshot matrix X. */
- /* ===================================== */
- /* The left singular vectors are stored in the array X. */
- /* The right singular vectors are in the array W. */
- /* The array W will later on contain the eigenvectors */
- /* of a Rayleigh quotient. */
- numrnk = *n;
- /* SELECT CASE ( WHTSVD ) */
- if (*whtsvd == 1) {
- zgesvd_("O", "S", m, n, &x[x_offset], ldx, &rwork[1], &b[b_offset],
- ldb, &w[w_offset], ldw, &zwork[1], lzwork, &rwork[*n + 1], &
- info1);
- /* LA */
- *(unsigned char *)t_or_n__ = 'C';
- } else if (*whtsvd == 2) {
- zgesdd_("O", m, n, &x[x_offset], ldx, &rwork[1], &b[b_offset], ldb, &
- w[w_offset], ldw, &zwork[1], lzwork, &rwork[*n + 1], &iwork[1]
- , &info1);
- /* LAP */
- *(unsigned char *)t_or_n__ = 'C';
- } else if (*whtsvd == 3) {
- i__1 = *lrwork - *n;
- zgesvdq_("H", "P", "N", "R", "R", m, n, &x[x_offset], ldx, &rwork[1],
- &z__[z_offset], ldz, &w[w_offset], ldw, &numrnk, &iwork[1],
- liwork, &zwork[1], lzwork, &rwork[*n + 1], &i__1, &info1);
- /* LAPACK CA */
- zlacpy_("A", m, &numrnk, &z__[z_offset], ldz, &x[x_offset], ldx);
- /* LAPACK C */
- *(unsigned char *)t_or_n__ = 'C';
- } else if (*whtsvd == 4) {
- i__1 = *lrwork - *n;
- zgejsv_("F", "U", jsvopt, "R", "N", "P", m, n, &x[x_offset], ldx, &
- rwork[1], &z__[z_offset], ldz, &w[w_offset], ldw, &zwork[1],
- lzwork, &rwork[*n + 1], &i__1, &iwork[1], &info1);
- zlacpy_("A", m, n, &z__[z_offset], ldz, &x[x_offset], ldx);
- /* LAPACK CALL */
- *(unsigned char *)t_or_n__ = 'N';
- xscl1 = rwork[*n + 1];
- xscl2 = rwork[*n + 2];
- if (xscl1 != xscl2) {
- /* This is an exceptional situation. If the */
- /* data matrices are not scaled and the */
- /* largest singular value of X overflows. */
- /* In that case ZGEJSV can return the SVD */
- /* in scaled form. The scaling factor can be used */
- /* to rescale the data (X and Y). */
- zlascl_("G", &c__0, &c__0, &xscl1, &xscl2, m, n, &y[y_offset],
- ldy, &info2);
- }
- /* END SELECT */
- }
-
- if (info1 > 0) {
- /* The SVD selected subroutine did not converge. */
- /* Return with an error code. */
- *info = 2;
- return 0;
- }
-
- if (rwork[1] == zero) {
- /* The largest computed singular value of (scaled) */
- /* X is zero. Return error code -8 */
- /* (the 8th input variable had an illegal value). */
- *k = 0;
- *info = -8;
- i__1 = -(*info);
- xerbla_("ZGEDMD", &i__1);
- return 0;
- }
-
- /* <3> Determine the numerical rank of the data */
- /* snapshots matrix X. This depends on the */
- /* parameters NRNK and TOL. */
- /* SELECT CASE ( NRNK ) */
- if (*nrnk == -1) {
- *k = 1;
- i__1 = numrnk;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if (rwork[i__] <= rwork[1] * *tol || rwork[i__] <= small) {
- myexit_();
- }
- ++(*k);
- }
- } else if (*nrnk == -2) {
- *k = 1;
- i__1 = numrnk - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (rwork[i__ + 1] <= rwork[i__] * *tol || rwork[i__] <= small) {
- myexit_();
- }
- ++(*k);
- }
- } else {
- *k = 1;
- i__1 = *nrnk;
- for (i__ = 2; i__ <= i__1; ++i__) {
- if (rwork[i__] <= small) {
- myexit_();
- }
- ++(*k);
- }
- /* END SELECT */
- }
- /* Now, U = X(1:M,1:K) is the SVD/POD basis for the */
- /* snapshot data in the input matrix X. */
- /* <4> Compute the Rayleigh quotient S = U^H * A * U. */
- /* Depending on the requested outputs, the computation */
- /* is organized to compute additional auxiliary */
- /* matrices (for the residuals and refinements). */
-
- /* In all formulas below, we need V_k*Sigma_k^(-1) */
- /* where either V_k is in W(1:N,1:K), or V_k^H is in */
- /* W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). */
- if (lsame_(t_or_n__, "N")) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__1 = one / rwork[i__];
- zdscal_(n, &d__1, &w[i__ * w_dim1 + 1], &c__1);
- /* W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC */
- /* BLAS CALL */
- }
- } else {
- /* This non-unit stride access is due to the fact */
- /* that ZGESVD, ZGESVDQ and ZGESDD return the */
- /* adjoint matrix of the right singular vectors. */
- /* DO i = 1, K */
- /* CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL */
- /* ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC */
- /* END DO */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- rwork[*n + i__] = one / rwork[i__];
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * w_dim1;
- i__4 = *n + i__;
- z__2.r = rwork[i__4], z__2.i = zero;
- i__5 = i__ + j * w_dim1;
- z__1.r = z__2.r * w[i__5].r - z__2.i * w[i__5].i, z__1.i =
- z__2.r * w[i__5].i + z__2.i * w[i__5].r;
- w[i__3].r = z__1.r, w[i__3].i = z__1.i;
- }
- }
- }
-
- if (wntref) {
-
- /* Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) */
- /* for computing the refined Ritz vectors */
- /* (optionally, outside ZGEDMD). */
- zgemm_("N", t_or_n__, m, k, n, &zone, &y[y_offset], ldy, &w[w_offset],
- ldw, &zzero, &z__[z_offset], ldz);
- /* Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! */
- /* Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! */
-
- /* At this point Z contains */
- /* A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and */
- /* this is needed for computing the residuals. */
- /* This matrix is returned in the array B and */
- /* it can be used to compute refined Ritz vectors. */
- /* BLA */
- zlacpy_("A", m, k, &z__[z_offset], ldz, &b[b_offset], ldb);
- /* B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC */
- /* BLAS CALL */
- zgemm_("C", "N", k, k, m, &zone, &x[x_offset], ldx, &z__[z_offset],
- ldz, &zzero, &s[s_offset], lds);
- /* S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) */
- /* At this point S = U^H * A * U is the Rayleigh quotient. */
- /* BLA */
- } else {
- /* A * U(:,1:K) is not explicitly needed and the */
- /* computation is organized differently. The Rayleigh */
- /* quotient is computed more efficiently. */
- zgemm_("C", "N", k, n, m, &zone, &x[x_offset], ldx, &y[y_offset], ldy,
- &zzero, &z__[z_offset], ldz);
- /* Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) */
-
- zgemm_("N", t_or_n__, k, k, n, &zone, &z__[z_offset], ldz, &w[
- w_offset], ldw, &zzero, &s[s_offset], lds);
- /* S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! */
- /* S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! */
- /* At this point S = U^H * A * U is the Rayleigh quotient. */
- /* If the residuals are requested, save scaled V_k into Z. */
- /* Recall that V_k or V_k^H is stored in W. */
- /* BLAS */
- if (wntres || wntex) {
- if (lsame_(t_or_n__, "N")) {
- zlacpy_("A", n, k, &w[w_offset], ldw, &z__[z_offset], ldz);
- } else {
- zlacpy_("A", k, n, &w[w_offset], ldw, &z__[z_offset], ldz);
- }
- }
- }
-
- /* <5> Compute the Ritz values and (if requested) the */
- /* right eigenvectors of the Rayleigh quotient. */
-
- zgeev_("N", jobzl, k, &s[s_offset], lds, &eigs[1], &w[w_offset], ldw, &w[
- w_offset], ldw, &zwork[1], lzwork, &rwork[*n + 1], &info1);
-
- /* W(1:K,1:K) contains the eigenvectors of the Rayleigh */
- /* quotient. See the description of Z. */
- /* Also, see the description of ZGEEV. */
- /* LAPACK CALL */
- if (info1 > 0) {
- /* ZGEEV failed to compute the eigenvalues and */
- /* eigenvectors of the Rayleigh quotient. */
- *info = 3;
- return 0;
- }
-
- /* <6> Compute the eigenvectors (if requested) and, */
- /* the residuals (if requested). */
-
- if (wntvec || wntex) {
- if (wntres) {
- if (wntref) {
- /* Here, if the refinement is requested, we have */
- /* A*U(:,1:K) already computed and stored in Z. */
- /* For the residuals, need Y = A * U(:,1;K) * W. */
- zgemm_("N", "N", m, k, k, &zone, &z__[z_offset], ldz, &w[
- w_offset], ldw, &zzero, &y[y_offset], ldy);
- /* Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC */
- /* This frees Z; Y contains A * U(:,1:K) * W. */
- /* BLAS CALL */
- } else {
- /* Compute S = V_k * Sigma_k^(-1) * W, where */
- /* V_k * Sigma_k^(-1) (or its adjoint) is stored in Z */
- zgemm_(t_or_n__, "N", n, k, k, &zone, &z__[z_offset], ldz, &w[
- w_offset], ldw, &zzero, &s[s_offset], lds);
- /* Then, compute Z = Y * S = */
- /* = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = */
- /* = A * U(:,1:K) * W(1:K,1:K) */
- zgemm_("N", "N", m, k, n, &zone, &y[y_offset], ldy, &s[
- s_offset], lds, &zzero, &z__[z_offset], ldz);
- /* Save a copy of Z into Y and free Z for holding */
- /* the Ritz vectors. */
- zlacpy_("A", m, k, &z__[z_offset], ldz, &y[y_offset], ldy);
- if (wntex) {
- zlacpy_("A", m, k, &z__[z_offset], ldz, &b[b_offset], ldb);
- }
- }
- } else if (wntex) {
- /* Compute S = V_k * Sigma_k^(-1) * W, where */
- /* V_k * Sigma_k^(-1) is stored in Z */
- zgemm_(t_or_n__, "N", n, k, k, &zone, &z__[z_offset], ldz, &w[
- w_offset], ldw, &zzero, &s[s_offset], lds);
- /* Then, compute Z = Y * S = */
- /* = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = */
- /* = A * U(:,1:K) * W(1:K,1:K) */
- zgemm_("N", "N", m, k, n, &zone, &y[y_offset], ldy, &s[s_offset],
- lds, &zzero, &b[b_offset], ldb);
- /* The above call replaces the following two calls */
- /* that were used in the developing-testing phase. */
- /* CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & */
- /* LDS, ZZERO, Z, LDZ) */
- /* Save a copy of Z into B and free Z for holding */
- /* the Ritz vectors. */
- /* CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) */
- }
-
- /* Compute the Ritz vectors */
- if (wntvec) {
- zgemm_("N", "N", m, k, k, &zone, &x[x_offset], ldx, &w[w_offset],
- ldw, &zzero, &z__[z_offset], ldz);
- }
- /* Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC */
-
- /* BLAS CALL */
- if (wntres) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- z__1.r = -eigs[i__2].r, z__1.i = -eigs[i__2].i;
- zaxpy_(m, &z__1, &z__[i__ * z_dim1 + 1], &c__1, &y[i__ *
- y_dim1 + 1], &c__1);
- /* Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTR */
- /* BLAS */
- res[i__] = dznrm2_(m, &y[i__ * y_dim1 + 1], &c__1);
- /* BLAS */
- }
- }
- }
-
- if (*whtsvd == 4) {
- rwork[*n + 1] = xscl1;
- rwork[*n + 2] = xscl2;
- }
-
- /* Successful exit. */
- if (! badxy) {
- *info = 0;
- } else {
- /* A warning on possible data inconsistency. */
- /* This should be a rare event. */
- *info = 4;
- }
- /* ............................................................ */
- return 0;
- /* ...... */
- } /* zgedmd_ */
|