|
- *> \brief \b STRTRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download STRTRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strtri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strtri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strtri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STRTRI( UPLO, DIAG, N, A, LDA, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STRTRI computes the inverse of a real upper or lower triangular
- *> matrix A.
- *>
- *> This is the Level 3 BLAS version of the algorithm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': A is upper triangular;
- *> = 'L': A is lower triangular.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> = 'N': A is non-unit triangular;
- *> = 'U': A is unit triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the triangular matrix A. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of the array A contains
- *> the upper triangular matrix, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of the array A contains
- *> the lower triangular matrix, and the strictly upper
- *> triangular part of A is not referenced. If DIAG = 'U', the
- *> diagonal elements of A are also not referenced and are
- *> assumed to be 1.
- *> On exit, the (triangular) inverse of the original matrix, in
- *> the same storage format.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
- *> matrix is singular and its inverse can not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE STRTRI( UPLO, DIAG, N, A, LDA, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOUNIT, UPPER
- INTEGER J, JB, NB, NN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL STRMM, STRSM, STRTI2, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- NOUNIT = LSAME( DIAG, 'N' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'STRTRI', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Check for singularity if non-unit.
- *
- IF( NOUNIT ) THEN
- DO 10 INFO = 1, N
- IF( A( INFO, INFO ).EQ.ZERO )
- $ RETURN
- 10 CONTINUE
- INFO = 0
- END IF
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.N ) THEN
- *
- * Use unblocked code
- *
- CALL STRTI2( UPLO, DIAG, N, A, LDA, INFO )
- ELSE
- *
- * Use blocked code
- *
- IF( UPPER ) THEN
- *
- * Compute inverse of upper triangular matrix
- *
- DO 20 J = 1, N, NB
- JB = MIN( NB, N-J+1 )
- *
- * Compute rows 1:j-1 of current block column
- *
- CALL STRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1,
- $ JB, ONE, A, LDA, A( 1, J ), LDA )
- CALL STRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1,
- $ JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
- *
- * Compute inverse of current diagonal block
- *
- CALL STRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
- 20 CONTINUE
- ELSE
- *
- * Compute inverse of lower triangular matrix
- *
- NN = ( ( N-1 ) / NB )*NB + 1
- DO 30 J = NN, 1, -NB
- JB = MIN( NB, N-J+1 )
- IF( J+JB.LE.N ) THEN
- *
- * Compute rows j+jb:n of current block column
- *
- CALL STRMM( 'Left', 'Lower', 'No transpose', DIAG,
- $ N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
- $ A( J+JB, J ), LDA )
- CALL STRSM( 'Right', 'Lower', 'No transpose', DIAG,
- $ N-J-JB+1, JB, -ONE, A( J, J ), LDA,
- $ A( J+JB, J ), LDA )
- END IF
- *
- * Compute inverse of current diagonal block
- *
- CALL STRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
- 30 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of STRTRI
- *
- END
|