|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
-
- /* > \brief \b STRSEN */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download STRSEN + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsen.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsen.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsen.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, */
- /* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO ) */
-
- /* CHARACTER COMPQ, JOB */
- /* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N */
- /* REAL S, SEP */
- /* LOGICAL SELECT( * ) */
- /* INTEGER IWORK( * ) */
- /* REAL Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ), */
- /* $ WR( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STRSEN reorders the real Schur factorization of a real matrix */
- /* > A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
- /* > the leading diagonal blocks of the upper quasi-triangular matrix T, */
- /* > and the leading columns of Q form an orthonormal basis of the */
- /* > corresponding right invariant subspace. */
- /* > */
- /* > Optionally the routine computes the reciprocal condition numbers of */
- /* > the cluster of eigenvalues and/or the invariant subspace. */
- /* > */
- /* > T must be in Schur canonical form (as returned by SHSEQR), that is, */
- /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
- /* > 2-by-2 diagonal block has its diagonal elements equal and its */
- /* > off-diagonal elements of opposite sign. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > Specifies whether condition numbers are required for the */
- /* > cluster of eigenvalues (S) or the invariant subspace (SEP): */
- /* > = 'N': none; */
- /* > = 'E': for eigenvalues only (S); */
- /* > = 'V': for invariant subspace only (SEP); */
- /* > = 'B': for both eigenvalues and invariant subspace (S and */
- /* > SEP). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPQ */
- /* > \verbatim */
- /* > COMPQ is CHARACTER*1 */
- /* > = 'V': update the matrix Q of Schur vectors; */
- /* > = 'N': do not update Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > SELECT specifies the eigenvalues in the selected cluster. To */
- /* > select a real eigenvalue w(j), SELECT(j) must be set to */
- /* > .TRUE.. To select a complex conjugate pair of eigenvalues */
- /* > w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
- /* > either SELECT(j) or SELECT(j+1) or both must be set to */
- /* > .TRUE.; a complex conjugate pair of eigenvalues must be */
- /* > either both included in the cluster or both excluded. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix T. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] T */
- /* > \verbatim */
- /* > T is REAL array, dimension (LDT,N) */
- /* > On entry, the upper quasi-triangular matrix T, in Schur */
- /* > canonical form. */
- /* > On exit, T is overwritten by the reordered matrix T, again in */
- /* > Schur canonical form, with the selected eigenvalues in the */
- /* > leading diagonal blocks. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is REAL array, dimension (LDQ,N) */
- /* > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
- /* > On exit, if COMPQ = 'V', Q has been postmultiplied by the */
- /* > orthogonal transformation matrix which reorders T; the */
- /* > leading M columns of Q form an orthonormal basis for the */
- /* > specified invariant subspace. */
- /* > If COMPQ = 'N', Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WR */
- /* > \verbatim */
- /* > WR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WI */
- /* > \verbatim */
- /* > WI is REAL array, dimension (N) */
- /* > */
- /* > The real and imaginary parts, respectively, of the reordered */
- /* > eigenvalues of T. The eigenvalues are stored in the same */
- /* > order as on the diagonal of T, with WR(i) = T(i,i) and, if */
- /* > T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
- /* > WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
- /* > sufficiently ill-conditioned, then its value may differ */
- /* > significantly from its value before reordering. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The dimension of the specified invariant subspace. */
- /* > 0 < = M <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL */
- /* > If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
- /* > condition number for the selected cluster of eigenvalues. */
- /* > S cannot underestimate the true reciprocal condition number */
- /* > by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
- /* > If JOB = 'N' or 'V', S is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SEP */
- /* > \verbatim */
- /* > SEP is REAL */
- /* > If JOB = 'V' or 'B', SEP is the estimated reciprocal */
- /* > condition number of the specified invariant subspace. If */
- /* > M = 0 or N, SEP = norm(T). */
- /* > If JOB = 'N' or 'E', SEP is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > If JOB = 'N', LWORK >= f2cmax(1,N); */
- /* > if JOB = 'E', LWORK >= f2cmax(1,M*(N-M)); */
- /* > if JOB = 'V' or 'B', LWORK >= f2cmax(1,2*M*(N-M)). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
- /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LIWORK */
- /* > \verbatim */
- /* > LIWORK is INTEGER */
- /* > The dimension of the array IWORK. */
- /* > If JOB = 'N' or 'E', LIWORK >= 1; */
- /* > if JOB = 'V' or 'B', LIWORK >= f2cmax(1,M*(N-M)). */
- /* > */
- /* > If LIWORK = -1, then a workspace query is assumed; the */
- /* > routine only calculates the optimal size of the IWORK array, */
- /* > returns this value as the first entry of the IWORK array, and */
- /* > no error message related to LIWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > = 1: reordering of T failed because some eigenvalues are too */
- /* > close to separate (the problem is very ill-conditioned); */
- /* > T may have been partially reordered, and WR and WI */
- /* > contain the eigenvalues in the same order as in T; S and */
- /* > SEP (if requested) are set to zero. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date April 2012 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STRSEN first collects the selected eigenvalues by computing an */
- /* > orthogonal transformation Z to move them to the top left corner of T. */
- /* > In other words, the selected eigenvalues are the eigenvalues of T11 */
- /* > in: */
- /* > */
- /* > Z**T * T * Z = ( T11 T12 ) n1 */
- /* > ( 0 T22 ) n2 */
- /* > n1 n2 */
- /* > */
- /* > where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns */
- /* > of Z span the specified invariant subspace of T. */
- /* > */
- /* > If T has been obtained from the real Schur factorization of a matrix */
- /* > A = Q*T*Q**T, then the reordered real Schur factorization of A is given */
- /* > by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span */
- /* > the corresponding invariant subspace of A. */
- /* > */
- /* > The reciprocal condition number of the average of the eigenvalues of */
- /* > T11 may be returned in S. S lies between 0 (very badly conditioned) */
- /* > and 1 (very well conditioned). It is computed as follows. First we */
- /* > compute R so that */
- /* > */
- /* > P = ( I R ) n1 */
- /* > ( 0 0 ) n2 */
- /* > n1 n2 */
- /* > */
- /* > is the projector on the invariant subspace associated with T11. */
- /* > R is the solution of the Sylvester equation: */
- /* > */
- /* > T11*R - R*T22 = T12. */
- /* > */
- /* > Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
- /* > the two-norm of M. Then S is computed as the lower bound */
- /* > */
- /* > (1 + F-norm(R)**2)**(-1/2) */
- /* > */
- /* > on the reciprocal of 2-norm(P), the true reciprocal condition number. */
- /* > S cannot underestimate 1 / 2-norm(P) by more than a factor of */
- /* > sqrt(N). */
- /* > */
- /* > An approximate error bound for the computed average of the */
- /* > eigenvalues of T11 is */
- /* > */
- /* > EPS * norm(T) / S */
- /* > */
- /* > where EPS is the machine precision. */
- /* > */
- /* > The reciprocal condition number of the right invariant subspace */
- /* > spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
- /* > SEP is defined as the separation of T11 and T22: */
- /* > */
- /* > sep( T11, T22 ) = sigma-f2cmin( C ) */
- /* > */
- /* > where sigma-f2cmin(C) is the smallest singular value of the */
- /* > n1*n2-by-n1*n2 matrix */
- /* > */
- /* > C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
- /* > */
- /* > I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
- /* > product. We estimate sigma-f2cmin(C) by the reciprocal of an estimate of */
- /* > the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
- /* > cannot differ from sigma-f2cmin(C) by more than a factor of sqrt(n1*n2). */
- /* > */
- /* > When SEP is small, small changes in T can cause large changes in */
- /* > the invariant subspace. An approximate bound on the maximum angular */
- /* > error in the computed right invariant subspace is */
- /* > */
- /* > EPS * norm(T) / SEP */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void strsen_(char *job, char *compq, logical *select, integer
- *n, real *t, integer *ldt, real *q, integer *ldq, real *wr, real *wi,
- integer *m, real *s, real *sep, real *work, integer *lwork, integer *
- iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
- real r__1, r__2;
-
- /* Local variables */
- integer kase;
- logical pair;
- integer ierr;
- logical swap;
- integer k;
- real scale;
- extern logical lsame_(char *, char *);
- integer isave[3], lwmin;
- logical wantq, wants;
- real rnorm;
- integer n1, n2;
- extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
- real *, integer *, integer *);
- integer kk, nn, ks;
- extern real slange_(char *, integer *, integer *, real *, integer *, real
- *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical wantbh;
- extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *);
- integer liwmin;
- extern /* Subroutine */ void strexc_(char *, integer *, real *, integer *,
- real *, integer *, integer *, integer *, real *, integer *);
- logical wantsp, lquery;
- extern /* Subroutine */ void strsyl_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, integer *, real *, integer *
- , real *, integer *);
- real est;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* April 2012 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --wr;
- --wi;
- --work;
- --iwork;
-
- /* Function Body */
- wantbh = lsame_(job, "B");
- wants = lsame_(job, "E") || wantbh;
- wantsp = lsame_(job, "V") || wantbh;
- wantq = lsame_(compq, "V");
-
- *info = 0;
- lquery = *lwork == -1;
- if (! lsame_(job, "N") && ! wants && ! wantsp) {
- *info = -1;
- } else if (! lsame_(compq, "N") && ! wantq) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldq < 1 || wantq && *ldq < *n) {
- *info = -8;
- } else {
-
- /* Set M to the dimension of the specified invariant subspace, */
- /* and test LWORK and LIWORK. */
-
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (t[k + 1 + k * t_dim1] == 0.f) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
-
- n1 = *m;
- n2 = *n - *m;
- nn = n1 * n2;
-
- if (wantsp) {
- /* Computing MAX */
- i__1 = 1, i__2 = nn << 1;
- lwmin = f2cmax(i__1,i__2);
- liwmin = f2cmax(1,nn);
- } else if (lsame_(job, "N")) {
- lwmin = f2cmax(1,*n);
- liwmin = 1;
- } else if (lsame_(job, "E")) {
- lwmin = f2cmax(1,nn);
- liwmin = 1;
- }
-
- if (*lwork < lwmin && ! lquery) {
- *info = -15;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -17;
- }
- }
-
- if (*info == 0) {
- work[1] = (real) lwmin;
- iwork[1] = liwmin;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("STRSEN", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible. */
-
- if (*m == *n || *m == 0) {
- if (wants) {
- *s = 1.f;
- }
- if (wantsp) {
- *sep = slange_("1", n, n, &t[t_offset], ldt, &work[1]);
- }
- goto L40;
- }
-
- /* Collect the selected blocks at the top-left corner of T. */
-
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- swap = select[k];
- if (k < *n) {
- if (t[k + 1 + k * t_dim1] != 0.f) {
- pair = TRUE_;
- swap = swap || select[k + 1];
- }
- }
- if (swap) {
- ++ks;
-
- /* Swap the K-th block to position KS. */
-
- ierr = 0;
- kk = k;
- if (k != ks) {
- strexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
- kk, &ks, &work[1], &ierr);
- }
- if (ierr == 1 || ierr == 2) {
-
- /* Blocks too close to swap: exit. */
-
- *info = 1;
- if (wants) {
- *s = 0.f;
- }
- if (wantsp) {
- *sep = 0.f;
- }
- goto L40;
- }
- if (pair) {
- ++ks;
- }
- }
- }
- /* L20: */
- }
-
- if (wants) {
-
- /* Solve Sylvester equation for R: */
-
- /* T11*R - R*T22 = scale*T12 */
-
- slacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
- strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
- + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
-
- /* Estimate the reciprocal of the condition number of the cluster */
- /* of eigenvalues. */
-
- rnorm = slange_("F", &n1, &n2, &work[1], &n1, &work[1]);
- if (rnorm == 0.f) {
- *s = 1.f;
- } else {
- *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
- }
- }
-
- if (wantsp) {
-
- /* Estimate sep(T11,T22). */
-
- est = 0.f;
- kase = 0;
- L30:
- slacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
- if (kase != 0) {
- if (kase == 1) {
-
- /* Solve T11*R - R*T22 = scale*X. */
-
- strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
- 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
- ierr);
- } else {
-
- /* Solve T11**T*R - R*T22**T = scale*X. */
-
- strsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
- 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
- ierr);
- }
- goto L30;
- }
-
- *sep = scale / est;
- }
-
- L40:
-
- /* Store the output eigenvalues in WR and WI. */
-
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- wr[k] = t[k + k * t_dim1];
- wi[k] = 0.f;
- /* L50: */
- }
- i__1 = *n - 1;
- for (k = 1; k <= i__1; ++k) {
- if (t[k + 1 + k * t_dim1] != 0.f) {
- wi[k] = sqrt((r__1 = t[k + (k + 1) * t_dim1], abs(r__1))) * sqrt((
- r__2 = t[k + 1 + k * t_dim1], abs(r__2)));
- wi[k + 1] = -wi[k];
- }
- /* L60: */
- }
-
- work[1] = (real) lwmin;
- iwork[1] = liwmin;
-
- return;
-
- /* End of STRSEN */
-
- } /* strsen_ */
|