|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
- static real c_b17 = 0.f;
- static logical c_false = FALSE_;
- static real c_b29 = 1.f;
- static logical c_true = TRUE_;
-
- /* > \brief \b STREVC3 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download STREVC3 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strevc3
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strevc3
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strevc3
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE STREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, */
- /* VR, LDVR, MM, M, WORK, LWORK, INFO ) */
-
- /* CHARACTER HOWMNY, SIDE */
- /* INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* REAL T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STREVC3 computes some or all of the right and/or left eigenvectors of */
- /* > a real upper quasi-triangular matrix T. */
- /* > Matrices of this type are produced by the Schur factorization of */
- /* > a real general matrix: A = Q*T*Q**T, as computed by SHSEQR. */
- /* > */
- /* > The right eigenvector x and the left eigenvector y of T corresponding */
- /* > to an eigenvalue w are defined by: */
- /* > */
- /* > T*x = w*x, (y**T)*T = w*(y**T) */
- /* > */
- /* > where y**T denotes the transpose of the vector y. */
- /* > The eigenvalues are not input to this routine, but are read directly */
- /* > from the diagonal blocks of T. */
- /* > */
- /* > This routine returns the matrices X and/or Y of right and left */
- /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
- /* > input matrix. If Q is the orthogonal factor that reduces a matrix */
- /* > A to Schur form T, then Q*X and Q*Y are the matrices of right and */
- /* > left eigenvectors of A. */
- /* > */
- /* > This uses a Level 3 BLAS version of the back transformation. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > = 'R': compute right eigenvectors only; */
- /* > = 'L': compute left eigenvectors only; */
- /* > = 'B': compute both right and left eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] HOWMNY */
- /* > \verbatim */
- /* > HOWMNY is CHARACTER*1 */
- /* > = 'A': compute all right and/or left eigenvectors; */
- /* > = 'B': compute all right and/or left eigenvectors, */
- /* > backtransformed by the matrices in VR and/or VL; */
- /* > = 'S': compute selected right and/or left eigenvectors, */
- /* > as indicated by the logical array SELECT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
- /* > computed. */
- /* > If w(j) is a real eigenvalue, the corresponding real */
- /* > eigenvector is computed if SELECT(j) is .TRUE.. */
- /* > If w(j) and w(j+1) are the real and imaginary parts of a */
- /* > complex eigenvalue, the corresponding complex eigenvector is */
- /* > computed if either SELECT(j) or SELECT(j+1) is .TRUE., and */
- /* > on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to */
- /* > .FALSE.. */
- /* > Not referenced if HOWMNY = 'A' or 'B'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix T. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] T */
- /* > \verbatim */
- /* > T is REAL array, dimension (LDT,N) */
- /* > The upper quasi-triangular matrix T in Schur canonical form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VL */
- /* > \verbatim */
- /* > VL is REAL array, dimension (LDVL,MM) */
- /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
- /* > contain an N-by-N matrix Q (usually the orthogonal matrix Q */
- /* > of Schur vectors returned by SHSEQR). */
- /* > On exit, if SIDE = 'L' or 'B', VL contains: */
- /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
- /* > if HOWMNY = 'B', the matrix Q*Y; */
- /* > if HOWMNY = 'S', the left eigenvectors of T specified by */
- /* > SELECT, stored consecutively in the columns */
- /* > of VL, in the same order as their */
- /* > eigenvalues. */
- /* > A complex eigenvector corresponding to a complex eigenvalue */
- /* > is stored in two consecutive columns, the first holding the */
- /* > real part, and the second the imaginary part. */
- /* > Not referenced if SIDE = 'R'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. */
- /* > LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VR */
- /* > \verbatim */
- /* > VR is REAL array, dimension (LDVR,MM) */
- /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
- /* > contain an N-by-N matrix Q (usually the orthogonal matrix Q */
- /* > of Schur vectors returned by SHSEQR). */
- /* > On exit, if SIDE = 'R' or 'B', VR contains: */
- /* > if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
- /* > if HOWMNY = 'B', the matrix Q*X; */
- /* > if HOWMNY = 'S', the right eigenvectors of T specified by */
- /* > SELECT, stored consecutively in the columns */
- /* > of VR, in the same order as their */
- /* > eigenvalues. */
- /* > A complex eigenvector corresponding to a complex eigenvalue */
- /* > is stored in two consecutive columns, the first holding the */
- /* > real part and the second the imaginary part. */
- /* > Not referenced if SIDE = 'L'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. */
- /* > LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of columns in the arrays VL and/or VR. MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of columns in the arrays VL and/or VR actually */
- /* > used to store the eigenvectors. */
- /* > If HOWMNY = 'A' or 'B', M is set to N. */
- /* > Each selected real eigenvector occupies one column and each */
- /* > selected complex eigenvector occupies two columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of array WORK. LWORK >= f2cmax(1,3*N). */
- /* > For optimum performance, LWORK >= N + 2*N*NB, where NB is */
- /* > the optimal blocksize. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* @generated from dtrevc3.f, fortran d -> s, Tue Apr 19 01:47:44 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The algorithm used in this program is basically backward (forward) */
- /* > substitution, with scaling to make the the code robust against */
- /* > possible overflow. */
- /* > */
- /* > Each eigenvector is normalized so that the element of largest */
- /* > magnitude has magnitude 1; here the magnitude of a complex number */
- /* > (x,y) is taken to be |x| + |y|. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void strevc3_(char *side, char *howmny, logical *select,
- integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr,
- integer *ldvr, integer *mm, integer *m, real *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1[2],
- i__2, i__3, i__4;
- real r__1, r__2, r__3, r__4;
- char ch__1[2];
-
- /* Local variables */
- real beta, emax;
- logical pair, allv;
- integer ierr;
- real unfl, ovfl, smin;
- extern real sdot_(integer *, real *, integer *, real *, integer *);
- logical over;
- real vmax;
- integer jnxt, i__, j, k;
- real scale, x[4] /* was [2][2] */;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
- sgemm_(char *, char *, integer *, integer *, integer *, real *,
- real *, integer *, real *, integer *, real *, real *, integer *);
- real remax;
- logical leftv;
- extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
- real *, integer *, real *, integer *, real *, real *, integer *);
- logical bothv;
- real vcrit;
- logical somev;
- integer j1, j2;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *);
- real xnorm;
- extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
- real *, integer *);
- integer iscomplex[128];
- extern /* Subroutine */ void slaln2_(logical *, integer *, integer *, real
- *, real *, real *, integer *, real *, real *, real *, integer *,
- real *, real *, real *, integer *, real *, real *, integer *);
- integer nb, ii, ki;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer ip, is, iv;
- real wi;
- extern real slamch_(char *);
- real wr;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- real bignum;
- extern integer isamax_(integer *, real *, integer *);
- extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *), slaset_(char *, integer *,
- integer *, real *, real *, real *, integer *);
- logical rightv;
- integer ki2, maxwrk;
- real smlnum;
- logical lquery;
- real rec, ulp;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
-
- /* Function Body */
- bothv = lsame_(side, "B");
- rightv = lsame_(side, "R") || bothv;
- leftv = lsame_(side, "L") || bothv;
-
- allv = lsame_(howmny, "A");
- over = lsame_(howmny, "B");
- somev = lsame_(howmny, "S");
-
- *info = 0;
- /* Writing concatenation */
- i__1[0] = 1, a__1[0] = side;
- i__1[1] = 1, a__1[1] = howmny;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- nb = ilaenv_(&c__1, "STREVC", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)2);
- maxwrk = *n + (*n << 1) * nb;
- work[1] = (real) maxwrk;
- lquery = *lwork == -1;
- if (! rightv && ! leftv) {
- *info = -1;
- } else if (! allv && ! over && ! somev) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || leftv && *ldvl < *n) {
- *info = -8;
- } else if (*ldvr < 1 || rightv && *ldvr < *n) {
- *info = -10;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__2 = 1, i__3 = *n * 3;
- if (*lwork < f2cmax(i__2,i__3) && ! lquery) {
- *info = -14;
- } else {
-
- /* Set M to the number of columns required to store the selected */
- /* eigenvectors, standardize the array SELECT if necessary, and */
- /* test MM. */
-
- if (somev) {
- *m = 0;
- pair = FALSE_;
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- if (pair) {
- pair = FALSE_;
- select[j] = FALSE_;
- } else {
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] == 0.f) {
- if (select[j]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[j] || select[j + 1]) {
- select[j] = TRUE_;
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
-
- if (*mm < *m) {
- *info = -11;
- }
- }
- }
- if (*info != 0) {
- i__2 = -(*info);
- xerbla_("STREVC3", &i__2, (ftnlen)7);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible. */
-
- if (*n == 0) {
- return;
- }
-
- /* Use blocked version of back-transformation if sufficient workspace. */
- /* Zero-out the workspace to avoid potential NaN propagation. */
-
- if (over && *lwork >= *n + (*n << 4)) {
- nb = (*lwork - *n) / (*n << 1);
- nb = f2cmin(nb,128);
- i__2 = (nb << 1) + 1;
- slaset_("F", n, &i__2, &c_b17, &c_b17, &work[1], n);
- } else {
- nb = 1;
- }
-
- /* Set the constants to control overflow. */
-
- unfl = slamch_("Safe minimum");
- ovfl = 1.f / unfl;
- slabad_(&unfl, &ovfl);
- ulp = slamch_("Precision");
- smlnum = unfl * (*n / ulp);
- bignum = (1.f - ulp) / smlnum;
-
- /* Compute 1-norm of each column of strictly upper triangular */
- /* part of T to control overflow in triangular solver. */
-
- work[1] = 0.f;
- i__2 = *n;
- for (j = 2; j <= i__2; ++j) {
- work[j] = 0.f;
- i__3 = j - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- work[j] += (r__1 = t[i__ + j * t_dim1], abs(r__1));
- /* L20: */
- }
- /* L30: */
- }
-
- /* Index IP is used to specify the real or complex eigenvalue: */
- /* IP = 0, real eigenvalue, */
- /* 1, first of conjugate complex pair: (wr,wi) */
- /* -1, second of conjugate complex pair: (wr,wi) */
- /* ISCOMPLEX array stores IP for each column in current block. */
-
- if (rightv) {
-
- /* ============================================================ */
- /* Compute right eigenvectors. */
-
- /* IV is index of column in current block. */
- /* For complex right vector, uses IV-1 for real part and IV for complex part. */
- /* Non-blocked version always uses IV=2; */
- /* blocked version starts with IV=NB, goes down to 1 or 2. */
- /* (Note the "0-th" column is used for 1-norms computed above.) */
- iv = 2;
- if (nb > 2) {
- iv = nb;
- }
- ip = 0;
- is = *m;
- for (ki = *n; ki >= 1; --ki) {
- if (ip == -1) {
- /* previous iteration (ki+1) was second of conjugate pair, */
- /* so this ki is first of conjugate pair; skip to end of loop */
- ip = 1;
- goto L140;
- } else if (ki == 1) {
- /* last column, so this ki must be real eigenvalue */
- ip = 0;
- } else if (t[ki + (ki - 1) * t_dim1] == 0.f) {
- /* zero on sub-diagonal, so this ki is real eigenvalue */
- ip = 0;
- } else {
- /* non-zero on sub-diagonal, so this ki is second of conjugate pair */
- ip = -1;
- }
- if (somev) {
- if (ip == 0) {
- if (! select[ki]) {
- goto L140;
- }
- } else {
- if (! select[ki - 1]) {
- goto L140;
- }
- }
- }
-
- /* Compute the KI-th eigenvalue (WR,WI). */
-
- wr = t[ki + ki * t_dim1];
- wi = 0.f;
- if (ip != 0) {
- wi = sqrt((r__1 = t[ki + (ki - 1) * t_dim1], abs(r__1))) *
- sqrt((r__2 = t[ki - 1 + ki * t_dim1], abs(r__2)));
- }
- /* Computing MAX */
- r__1 = ulp * (abs(wr) + abs(wi));
- smin = f2cmax(r__1,smlnum);
-
- if (ip == 0) {
-
- /* -------------------------------------------------------- */
- /* Real right eigenvector */
-
- work[ki + iv * *n] = 1.f;
-
- /* Form right-hand side. */
-
- i__2 = ki - 1;
- for (k = 1; k <= i__2; ++k) {
- work[k + iv * *n] = -t[k + ki * t_dim1];
- /* L50: */
- }
-
- /* Solve upper quasi-triangular system: */
- /* [ T(1:KI-1,1:KI-1) - WR ]*X = SCALE*WORK. */
-
- jnxt = ki - 1;
- for (j = ki - 1; j >= 1; --j) {
- if (j > jnxt) {
- goto L60;
- }
- j1 = j;
- j2 = j;
- jnxt = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.f) {
- j1 = j - 1;
- jnxt = j - 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1-by-1 diagonal block */
-
- slaln2_(&c_false, &c__1, &c__1, &smin, &c_b29, &t[j +
- j * t_dim1], ldt, &c_b29, &c_b29, &work[j +
- iv * *n], n, &wr, &c_b17, x, &c__2, &scale, &
- xnorm, &ierr);
-
- /* Scale X(1,1) to avoid overflow when updating */
- /* the right-hand side. */
-
- if (xnorm > 1.f) {
- if (work[j] > bignum / xnorm) {
- x[0] /= xnorm;
- scale /= xnorm;
- }
- }
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
- }
- work[j + iv * *n] = x[0];
-
- /* Update right-hand side */
-
- i__2 = j - 1;
- r__1 = -x[0];
- saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
- iv * *n + 1], &c__1);
-
- } else {
-
- /* 2-by-2 diagonal block */
-
- slaln2_(&c_false, &c__2, &c__1, &smin, &c_b29, &t[j -
- 1 + (j - 1) * t_dim1], ldt, &c_b29, &c_b29, &
- work[j - 1 + iv * *n], n, &wr, &c_b17, x, &
- c__2, &scale, &xnorm, &ierr);
-
- /* Scale X(1,1) and X(2,1) to avoid overflow when */
- /* updating the right-hand side. */
-
- if (xnorm > 1.f) {
- /* Computing MAX */
- r__1 = work[j - 1], r__2 = work[j];
- beta = f2cmax(r__1,r__2);
- if (beta > bignum / xnorm) {
- x[0] /= xnorm;
- x[1] /= xnorm;
- scale /= xnorm;
- }
- }
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
- }
- work[j - 1 + iv * *n] = x[0];
- work[j + iv * *n] = x[1];
-
- /* Update right-hand side */
-
- i__2 = j - 2;
- r__1 = -x[0];
- saxpy_(&i__2, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[iv * *n + 1], &c__1);
- i__2 = j - 2;
- r__1 = -x[1];
- saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
- iv * *n + 1], &c__1);
- }
- L60:
- ;
- }
-
- /* Copy the vector x or Q*x to VR and normalize. */
-
- if (! over) {
- /* ------------------------------ */
- /* no back-transform: copy x to VR and normalize. */
- scopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 +
- 1], &c__1);
-
- ii = isamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
- remax = 1.f / (r__1 = vr[ii + is * vr_dim1], abs(r__1));
- sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
-
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- vr[k + is * vr_dim1] = 0.f;
- /* L70: */
- }
-
- } else if (nb == 1) {
- /* ------------------------------ */
- /* version 1: back-transform each vector with GEMV, Q*x. */
- if (ki > 1) {
- i__2 = ki - 1;
- sgemv_("N", n, &i__2, &c_b29, &vr[vr_offset], ldvr, &
- work[iv * *n + 1], &c__1, &work[ki + iv * *n],
- &vr[ki * vr_dim1 + 1], &c__1);
- }
-
- ii = isamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
- remax = 1.f / (r__1 = vr[ii + ki * vr_dim1], abs(r__1));
- sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
-
- } else {
- /* ------------------------------ */
- /* version 2: back-transform block of vectors with GEMM */
- /* zero out below vector */
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- work[k + iv * *n] = 0.f;
- }
- iscomplex[iv - 1] = ip;
- /* back-transform and normalization is done below */
- }
- } else {
-
- /* -------------------------------------------------------- */
- /* Complex right eigenvector. */
-
- /* Initial solve */
- /* [ ( T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I*WI) ]*X = 0. */
- /* [ ( T(KI, KI-1) T(KI, KI) ) ] */
-
- if ((r__1 = t[ki - 1 + ki * t_dim1], abs(r__1)) >= (r__2 = t[
- ki + (ki - 1) * t_dim1], abs(r__2))) {
- work[ki - 1 + (iv - 1) * *n] = 1.f;
- work[ki + iv * *n] = wi / t[ki - 1 + ki * t_dim1];
- } else {
- work[ki - 1 + (iv - 1) * *n] = -wi / t[ki + (ki - 1) *
- t_dim1];
- work[ki + iv * *n] = 1.f;
- }
- work[ki + (iv - 1) * *n] = 0.f;
- work[ki - 1 + iv * *n] = 0.f;
-
- /* Form right-hand side. */
-
- i__2 = ki - 2;
- for (k = 1; k <= i__2; ++k) {
- work[k + (iv - 1) * *n] = -work[ki - 1 + (iv - 1) * *n] *
- t[k + (ki - 1) * t_dim1];
- work[k + iv * *n] = -work[ki + iv * *n] * t[k + ki *
- t_dim1];
- /* L80: */
- }
-
- /* Solve upper quasi-triangular system: */
- /* [ T(1:KI-2,1:KI-2) - (WR+i*WI) ]*X = SCALE*(WORK+i*WORK2) */
-
- jnxt = ki - 2;
- for (j = ki - 2; j >= 1; --j) {
- if (j > jnxt) {
- goto L90;
- }
- j1 = j;
- j2 = j;
- jnxt = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.f) {
- j1 = j - 1;
- jnxt = j - 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1-by-1 diagonal block */
-
- slaln2_(&c_false, &c__1, &c__2, &smin, &c_b29, &t[j +
- j * t_dim1], ldt, &c_b29, &c_b29, &work[j + (
- iv - 1) * *n], n, &wr, &wi, x, &c__2, &scale,
- &xnorm, &ierr);
-
- /* Scale X(1,1) and X(1,2) to avoid overflow when */
- /* updating the right-hand side. */
-
- if (xnorm > 1.f) {
- if (work[j] > bignum / xnorm) {
- x[0] /= xnorm;
- x[2] /= xnorm;
- scale /= xnorm;
- }
- }
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- sscal_(&ki, &scale, &work[(iv - 1) * *n + 1], &
- c__1);
- sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
- }
- work[j + (iv - 1) * *n] = x[0];
- work[j + iv * *n] = x[2];
-
- /* Update the right-hand side */
-
- i__2 = j - 1;
- r__1 = -x[0];
- saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
- (iv - 1) * *n + 1], &c__1);
- i__2 = j - 1;
- r__1 = -x[2];
- saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
- iv * *n + 1], &c__1);
-
- } else {
-
- /* 2-by-2 diagonal block */
-
- slaln2_(&c_false, &c__2, &c__2, &smin, &c_b29, &t[j -
- 1 + (j - 1) * t_dim1], ldt, &c_b29, &c_b29, &
- work[j - 1 + (iv - 1) * *n], n, &wr, &wi, x, &
- c__2, &scale, &xnorm, &ierr);
-
- /* Scale X to avoid overflow when updating */
- /* the right-hand side. */
-
- if (xnorm > 1.f) {
- /* Computing MAX */
- r__1 = work[j - 1], r__2 = work[j];
- beta = f2cmax(r__1,r__2);
- if (beta > bignum / xnorm) {
- rec = 1.f / xnorm;
- x[0] *= rec;
- x[2] *= rec;
- x[1] *= rec;
- x[3] *= rec;
- scale *= rec;
- }
- }
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- sscal_(&ki, &scale, &work[(iv - 1) * *n + 1], &
- c__1);
- sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
- }
- work[j - 1 + (iv - 1) * *n] = x[0];
- work[j + (iv - 1) * *n] = x[1];
- work[j - 1 + iv * *n] = x[2];
- work[j + iv * *n] = x[3];
-
- /* Update the right-hand side */
-
- i__2 = j - 2;
- r__1 = -x[0];
- saxpy_(&i__2, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[(iv - 1) * *n + 1], &c__1);
- i__2 = j - 2;
- r__1 = -x[1];
- saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
- (iv - 1) * *n + 1], &c__1);
- i__2 = j - 2;
- r__1 = -x[2];
- saxpy_(&i__2, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[iv * *n + 1], &c__1);
- i__2 = j - 2;
- r__1 = -x[3];
- saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
- iv * *n + 1], &c__1);
- }
- L90:
- ;
- }
-
- /* Copy the vector x or Q*x to VR and normalize. */
-
- if (! over) {
- /* ------------------------------ */
- /* no back-transform: copy x to VR and normalize. */
- scopy_(&ki, &work[(iv - 1) * *n + 1], &c__1, &vr[(is - 1)
- * vr_dim1 + 1], &c__1);
- scopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 +
- 1], &c__1);
-
- emax = 0.f;
- i__2 = ki;
- for (k = 1; k <= i__2; ++k) {
- /* Computing MAX */
- r__3 = emax, r__4 = (r__1 = vr[k + (is - 1) * vr_dim1]
- , abs(r__1)) + (r__2 = vr[k + is * vr_dim1],
- abs(r__2));
- emax = f2cmax(r__3,r__4);
- /* L100: */
- }
- remax = 1.f / emax;
- sscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);
- sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
-
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- vr[k + (is - 1) * vr_dim1] = 0.f;
- vr[k + is * vr_dim1] = 0.f;
- /* L110: */
- }
-
- } else if (nb == 1) {
- /* ------------------------------ */
- /* version 1: back-transform each vector with GEMV, Q*x. */
- if (ki > 2) {
- i__2 = ki - 2;
- sgemv_("N", n, &i__2, &c_b29, &vr[vr_offset], ldvr, &
- work[(iv - 1) * *n + 1], &c__1, &work[ki - 1
- + (iv - 1) * *n], &vr[(ki - 1) * vr_dim1 + 1],
- &c__1);
- i__2 = ki - 2;
- sgemv_("N", n, &i__2, &c_b29, &vr[vr_offset], ldvr, &
- work[iv * *n + 1], &c__1, &work[ki + iv * *n],
- &vr[ki * vr_dim1 + 1], &c__1);
- } else {
- sscal_(n, &work[ki - 1 + (iv - 1) * *n], &vr[(ki - 1)
- * vr_dim1 + 1], &c__1);
- sscal_(n, &work[ki + iv * *n], &vr[ki * vr_dim1 + 1],
- &c__1);
- }
-
- emax = 0.f;
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- /* Computing MAX */
- r__3 = emax, r__4 = (r__1 = vr[k + (ki - 1) * vr_dim1]
- , abs(r__1)) + (r__2 = vr[k + ki * vr_dim1],
- abs(r__2));
- emax = f2cmax(r__3,r__4);
- /* L120: */
- }
- remax = 1.f / emax;
- sscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);
- sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
-
- } else {
- /* ------------------------------ */
- /* version 2: back-transform block of vectors with GEMM */
- /* zero out below vector */
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- work[k + (iv - 1) * *n] = 0.f;
- work[k + iv * *n] = 0.f;
- }
- iscomplex[iv - 2] = -ip;
- iscomplex[iv - 1] = ip;
- --iv;
- /* back-transform and normalization is done below */
- }
- }
- if (nb > 1) {
- /* -------------------------------------------------------- */
- /* Blocked version of back-transform */
- /* For complex case, KI2 includes both vectors (KI-1 and KI) */
- if (ip == 0) {
- ki2 = ki;
- } else {
- ki2 = ki - 1;
- }
- /* Columns IV:NB of work are valid vectors. */
- /* When the number of vectors stored reaches NB-1 or NB, */
- /* or if this was last vector, do the GEMM */
- if (iv <= 2 || ki2 == 1) {
- i__2 = nb - iv + 1;
- i__3 = ki2 + nb - iv;
- sgemm_("N", "N", n, &i__2, &i__3, &c_b29, &vr[vr_offset],
- ldvr, &work[iv * *n + 1], n, &c_b17, &work[(nb +
- iv) * *n + 1], n);
- /* normalize vectors */
- i__2 = nb;
- for (k = iv; k <= i__2; ++k) {
- if (iscomplex[k - 1] == 0) {
- /* real eigenvector */
- ii = isamax_(n, &work[(nb + k) * *n + 1], &c__1);
- remax = 1.f / (r__1 = work[ii + (nb + k) * *n],
- abs(r__1));
- } else if (iscomplex[k - 1] == 1) {
- /* first eigenvector of conjugate pair */
- emax = 0.f;
- i__3 = *n;
- for (ii = 1; ii <= i__3; ++ii) {
- /* Computing MAX */
- r__3 = emax, r__4 = (r__1 = work[ii + (nb + k)
- * *n], abs(r__1)) + (r__2 = work[ii
- + (nb + k + 1) * *n], abs(r__2));
- emax = f2cmax(r__3,r__4);
- }
- remax = 1.f / emax;
- /* else if ISCOMPLEX(K).EQ.-1 */
- /* second eigenvector of conjugate pair */
- /* reuse same REMAX as previous K */
- }
- sscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
- }
- i__2 = nb - iv + 1;
- slacpy_("F", n, &i__2, &work[(nb + iv) * *n + 1], n, &vr[
- ki2 * vr_dim1 + 1], ldvr);
- iv = nb;
- } else {
- --iv;
- }
- }
-
- /* blocked back-transform */
- --is;
- if (ip != 0) {
- --is;
- }
- L140:
- ;
- }
- }
- if (leftv) {
-
- /* ============================================================ */
- /* Compute left eigenvectors. */
-
- /* IV is index of column in current block. */
- /* For complex left vector, uses IV for real part and IV+1 for complex part. */
- /* Non-blocked version always uses IV=1; */
- /* blocked version starts with IV=1, goes up to NB-1 or NB. */
- /* (Note the "0-th" column is used for 1-norms computed above.) */
- iv = 1;
- ip = 0;
- is = 1;
- i__2 = *n;
- for (ki = 1; ki <= i__2; ++ki) {
- if (ip == 1) {
- /* previous iteration (ki-1) was first of conjugate pair, */
- /* so this ki is second of conjugate pair; skip to end of loop */
- ip = -1;
- goto L260;
- } else if (ki == *n) {
- /* last column, so this ki must be real eigenvalue */
- ip = 0;
- } else if (t[ki + 1 + ki * t_dim1] == 0.f) {
- /* zero on sub-diagonal, so this ki is real eigenvalue */
- ip = 0;
- } else {
- /* non-zero on sub-diagonal, so this ki is first of conjugate pair */
- ip = 1;
- }
-
- if (somev) {
- if (! select[ki]) {
- goto L260;
- }
- }
-
- /* Compute the KI-th eigenvalue (WR,WI). */
-
- wr = t[ki + ki * t_dim1];
- wi = 0.f;
- if (ip != 0) {
- wi = sqrt((r__1 = t[ki + (ki + 1) * t_dim1], abs(r__1))) *
- sqrt((r__2 = t[ki + 1 + ki * t_dim1], abs(r__2)));
- }
- /* Computing MAX */
- r__1 = ulp * (abs(wr) + abs(wi));
- smin = f2cmax(r__1,smlnum);
-
- if (ip == 0) {
-
- /* -------------------------------------------------------- */
- /* Real left eigenvector */
-
- work[ki + iv * *n] = 1.f;
-
- /* Form right-hand side. */
-
- i__3 = *n;
- for (k = ki + 1; k <= i__3; ++k) {
- work[k + iv * *n] = -t[ki + k * t_dim1];
- /* L160: */
- }
-
- /* Solve transposed quasi-triangular system: */
- /* [ T(KI+1:N,KI+1:N) - WR ]**T * X = SCALE*WORK */
-
- vmax = 1.f;
- vcrit = bignum;
-
- jnxt = ki + 1;
- i__3 = *n;
- for (j = ki + 1; j <= i__3; ++j) {
- if (j < jnxt) {
- goto L170;
- }
- j1 = j;
- j2 = j;
- jnxt = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.f) {
- j2 = j + 1;
- jnxt = j + 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1-by-1 diagonal block */
-
- /* Scale if necessary to avoid overflow when forming */
- /* the right-hand side. */
-
- if (work[j] > vcrit) {
- rec = 1.f / vmax;
- i__4 = *n - ki + 1;
- sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
- vmax = 1.f;
- vcrit = bignum;
- }
-
- i__4 = j - ki - 1;
- work[j + iv * *n] -= sdot_(&i__4, &t[ki + 1 + j *
- t_dim1], &c__1, &work[ki + 1 + iv * *n], &
- c__1);
-
- /* Solve [ T(J,J) - WR ]**T * X = WORK */
-
- slaln2_(&c_false, &c__1, &c__1, &smin, &c_b29, &t[j +
- j * t_dim1], ldt, &c_b29, &c_b29, &work[j +
- iv * *n], n, &wr, &c_b17, x, &c__2, &scale, &
- xnorm, &ierr);
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- i__4 = *n - ki + 1;
- sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
- }
- work[j + iv * *n] = x[0];
- /* Computing MAX */
- r__2 = (r__1 = work[j + iv * *n], abs(r__1));
- vmax = f2cmax(r__2,vmax);
- vcrit = bignum / vmax;
-
- } else {
-
- /* 2-by-2 diagonal block */
-
- /* Scale if necessary to avoid overflow when forming */
- /* the right-hand side. */
-
- /* Computing MAX */
- r__1 = work[j], r__2 = work[j + 1];
- beta = f2cmax(r__1,r__2);
- if (beta > vcrit) {
- rec = 1.f / vmax;
- i__4 = *n - ki + 1;
- sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
- vmax = 1.f;
- vcrit = bignum;
- }
-
- i__4 = j - ki - 1;
- work[j + iv * *n] -= sdot_(&i__4, &t[ki + 1 + j *
- t_dim1], &c__1, &work[ki + 1 + iv * *n], &
- c__1);
-
- i__4 = j - ki - 1;
- work[j + 1 + iv * *n] -= sdot_(&i__4, &t[ki + 1 + (j
- + 1) * t_dim1], &c__1, &work[ki + 1 + iv * *n]
- , &c__1);
-
- /* Solve */
- /* [ T(J,J)-WR T(J,J+1) ]**T * X = SCALE*( WORK1 ) */
- /* [ T(J+1,J) T(J+1,J+1)-WR ] ( WORK2 ) */
-
- slaln2_(&c_true, &c__2, &c__1, &smin, &c_b29, &t[j +
- j * t_dim1], ldt, &c_b29, &c_b29, &work[j +
- iv * *n], n, &wr, &c_b17, x, &c__2, &scale, &
- xnorm, &ierr);
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- i__4 = *n - ki + 1;
- sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
- }
- work[j + iv * *n] = x[0];
- work[j + 1 + iv * *n] = x[1];
-
- /* Computing MAX */
- r__3 = (r__1 = work[j + iv * *n], abs(r__1)), r__4 = (
- r__2 = work[j + 1 + iv * *n], abs(r__2)),
- r__3 = f2cmax(r__3,r__4);
- vmax = f2cmax(r__3,vmax);
- vcrit = bignum / vmax;
-
- }
- L170:
- ;
- }
-
- /* Copy the vector x or Q*x to VL and normalize. */
-
- if (! over) {
- /* ------------------------------ */
- /* no back-transform: copy x to VL and normalize. */
- i__3 = *n - ki + 1;
- scopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
-
- i__3 = *n - ki + 1;
- ii = isamax_(&i__3, &vl[ki + is * vl_dim1], &c__1) + ki -
- 1;
- remax = 1.f / (r__1 = vl[ii + is * vl_dim1], abs(r__1));
- i__3 = *n - ki + 1;
- sscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
-
- i__3 = ki - 1;
- for (k = 1; k <= i__3; ++k) {
- vl[k + is * vl_dim1] = 0.f;
- /* L180: */
- }
-
- } else if (nb == 1) {
- /* ------------------------------ */
- /* version 1: back-transform each vector with GEMV, Q*x. */
- if (ki < *n) {
- i__3 = *n - ki;
- sgemv_("N", n, &i__3, &c_b29, &vl[(ki + 1) * vl_dim1
- + 1], ldvl, &work[ki + 1 + iv * *n], &c__1, &
- work[ki + iv * *n], &vl[ki * vl_dim1 + 1], &
- c__1);
- }
-
- ii = isamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
- remax = 1.f / (r__1 = vl[ii + ki * vl_dim1], abs(r__1));
- sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
-
- } else {
- /* ------------------------------ */
- /* version 2: back-transform block of vectors with GEMM */
- /* zero out above vector */
- /* could go from KI-NV+1 to KI-1 */
- i__3 = ki - 1;
- for (k = 1; k <= i__3; ++k) {
- work[k + iv * *n] = 0.f;
- }
- iscomplex[iv - 1] = ip;
- /* back-transform and normalization is done below */
- }
- } else {
-
- /* -------------------------------------------------------- */
- /* Complex left eigenvector. */
-
- /* Initial solve: */
- /* [ ( T(KI,KI) T(KI,KI+1) )**T - (WR - I* WI) ]*X = 0. */
- /* [ ( T(KI+1,KI) T(KI+1,KI+1) ) ] */
-
- if ((r__1 = t[ki + (ki + 1) * t_dim1], abs(r__1)) >= (r__2 =
- t[ki + 1 + ki * t_dim1], abs(r__2))) {
- work[ki + iv * *n] = wi / t[ki + (ki + 1) * t_dim1];
- work[ki + 1 + (iv + 1) * *n] = 1.f;
- } else {
- work[ki + iv * *n] = 1.f;
- work[ki + 1 + (iv + 1) * *n] = -wi / t[ki + 1 + ki *
- t_dim1];
- }
- work[ki + 1 + iv * *n] = 0.f;
- work[ki + (iv + 1) * *n] = 0.f;
-
- /* Form right-hand side. */
-
- i__3 = *n;
- for (k = ki + 2; k <= i__3; ++k) {
- work[k + iv * *n] = -work[ki + iv * *n] * t[ki + k *
- t_dim1];
- work[k + (iv + 1) * *n] = -work[ki + 1 + (iv + 1) * *n] *
- t[ki + 1 + k * t_dim1];
- /* L190: */
- }
-
- /* Solve transposed quasi-triangular system: */
- /* [ T(KI+2:N,KI+2:N)**T - (WR-i*WI) ]*X = WORK1+i*WORK2 */
-
- vmax = 1.f;
- vcrit = bignum;
-
- jnxt = ki + 2;
- i__3 = *n;
- for (j = ki + 2; j <= i__3; ++j) {
- if (j < jnxt) {
- goto L200;
- }
- j1 = j;
- j2 = j;
- jnxt = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.f) {
- j2 = j + 1;
- jnxt = j + 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1-by-1 diagonal block */
-
- /* Scale if necessary to avoid overflow when */
- /* forming the right-hand side elements. */
-
- if (work[j] > vcrit) {
- rec = 1.f / vmax;
- i__4 = *n - ki + 1;
- sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
- i__4 = *n - ki + 1;
- sscal_(&i__4, &rec, &work[ki + (iv + 1) * *n], &
- c__1);
- vmax = 1.f;
- vcrit = bignum;
- }
-
- i__4 = j - ki - 2;
- work[j + iv * *n] -= sdot_(&i__4, &t[ki + 2 + j *
- t_dim1], &c__1, &work[ki + 2 + iv * *n], &
- c__1);
- i__4 = j - ki - 2;
- work[j + (iv + 1) * *n] -= sdot_(&i__4, &t[ki + 2 + j
- * t_dim1], &c__1, &work[ki + 2 + (iv + 1) * *
- n], &c__1);
-
- /* Solve [ T(J,J)-(WR-i*WI) ]*(X11+i*X12)= WK+I*WK2 */
-
- r__1 = -wi;
- slaln2_(&c_false, &c__1, &c__2, &smin, &c_b29, &t[j +
- j * t_dim1], ldt, &c_b29, &c_b29, &work[j +
- iv * *n], n, &wr, &r__1, x, &c__2, &scale, &
- xnorm, &ierr);
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- i__4 = *n - ki + 1;
- sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
- i__4 = *n - ki + 1;
- sscal_(&i__4, &scale, &work[ki + (iv + 1) * *n], &
- c__1);
- }
- work[j + iv * *n] = x[0];
- work[j + (iv + 1) * *n] = x[2];
- /* Computing MAX */
- r__3 = (r__1 = work[j + iv * *n], abs(r__1)), r__4 = (
- r__2 = work[j + (iv + 1) * *n], abs(r__2)),
- r__3 = f2cmax(r__3,r__4);
- vmax = f2cmax(r__3,vmax);
- vcrit = bignum / vmax;
-
- } else {
-
- /* 2-by-2 diagonal block */
-
- /* Scale if necessary to avoid overflow when forming */
- /* the right-hand side elements. */
-
- /* Computing MAX */
- r__1 = work[j], r__2 = work[j + 1];
- beta = f2cmax(r__1,r__2);
- if (beta > vcrit) {
- rec = 1.f / vmax;
- i__4 = *n - ki + 1;
- sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
- i__4 = *n - ki + 1;
- sscal_(&i__4, &rec, &work[ki + (iv + 1) * *n], &
- c__1);
- vmax = 1.f;
- vcrit = bignum;
- }
-
- i__4 = j - ki - 2;
- work[j + iv * *n] -= sdot_(&i__4, &t[ki + 2 + j *
- t_dim1], &c__1, &work[ki + 2 + iv * *n], &
- c__1);
-
- i__4 = j - ki - 2;
- work[j + (iv + 1) * *n] -= sdot_(&i__4, &t[ki + 2 + j
- * t_dim1], &c__1, &work[ki + 2 + (iv + 1) * *
- n], &c__1);
-
- i__4 = j - ki - 2;
- work[j + 1 + iv * *n] -= sdot_(&i__4, &t[ki + 2 + (j
- + 1) * t_dim1], &c__1, &work[ki + 2 + iv * *n]
- , &c__1);
-
- i__4 = j - ki - 2;
- work[j + 1 + (iv + 1) * *n] -= sdot_(&i__4, &t[ki + 2
- + (j + 1) * t_dim1], &c__1, &work[ki + 2 + (
- iv + 1) * *n], &c__1);
-
- /* Solve 2-by-2 complex linear equation */
- /* [ (T(j,j) T(j,j+1) )**T - (wr-i*wi)*I ]*X = SCALE*B */
- /* [ (T(j+1,j) T(j+1,j+1)) ] */
-
- r__1 = -wi;
- slaln2_(&c_true, &c__2, &c__2, &smin, &c_b29, &t[j +
- j * t_dim1], ldt, &c_b29, &c_b29, &work[j +
- iv * *n], n, &wr, &r__1, x, &c__2, &scale, &
- xnorm, &ierr);
-
- /* Scale if necessary */
-
- if (scale != 1.f) {
- i__4 = *n - ki + 1;
- sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
- i__4 = *n - ki + 1;
- sscal_(&i__4, &scale, &work[ki + (iv + 1) * *n], &
- c__1);
- }
- work[j + iv * *n] = x[0];
- work[j + (iv + 1) * *n] = x[2];
- work[j + 1 + iv * *n] = x[1];
- work[j + 1 + (iv + 1) * *n] = x[3];
- /* Computing MAX */
- r__1 = abs(x[0]), r__2 = abs(x[2]), r__1 = f2cmax(r__1,
- r__2), r__2 = abs(x[1]), r__1 = f2cmax(r__1,r__2)
- , r__2 = abs(x[3]), r__1 = f2cmax(r__1,r__2);
- vmax = f2cmax(r__1,vmax);
- vcrit = bignum / vmax;
-
- }
- L200:
- ;
- }
-
- /* Copy the vector x or Q*x to VL and normalize. */
-
- if (! over) {
- /* ------------------------------ */
- /* no back-transform: copy x to VL and normalize. */
- i__3 = *n - ki + 1;
- scopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
- i__3 = *n - ki + 1;
- scopy_(&i__3, &work[ki + (iv + 1) * *n], &c__1, &vl[ki + (
- is + 1) * vl_dim1], &c__1);
-
- emax = 0.f;
- i__3 = *n;
- for (k = ki; k <= i__3; ++k) {
- /* Computing MAX */
- r__3 = emax, r__4 = (r__1 = vl[k + is * vl_dim1], abs(
- r__1)) + (r__2 = vl[k + (is + 1) * vl_dim1],
- abs(r__2));
- emax = f2cmax(r__3,r__4);
- /* L220: */
- }
- remax = 1.f / emax;
- i__3 = *n - ki + 1;
- sscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
- i__3 = *n - ki + 1;
- sscal_(&i__3, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)
- ;
-
- i__3 = ki - 1;
- for (k = 1; k <= i__3; ++k) {
- vl[k + is * vl_dim1] = 0.f;
- vl[k + (is + 1) * vl_dim1] = 0.f;
- /* L230: */
- }
-
- } else if (nb == 1) {
- /* ------------------------------ */
- /* version 1: back-transform each vector with GEMV, Q*x. */
- if (ki < *n - 1) {
- i__3 = *n - ki - 1;
- sgemv_("N", n, &i__3, &c_b29, &vl[(ki + 2) * vl_dim1
- + 1], ldvl, &work[ki + 2 + iv * *n], &c__1, &
- work[ki + iv * *n], &vl[ki * vl_dim1 + 1], &
- c__1);
- i__3 = *n - ki - 1;
- sgemv_("N", n, &i__3, &c_b29, &vl[(ki + 2) * vl_dim1
- + 1], ldvl, &work[ki + 2 + (iv + 1) * *n], &
- c__1, &work[ki + 1 + (iv + 1) * *n], &vl[(ki
- + 1) * vl_dim1 + 1], &c__1);
- } else {
- sscal_(n, &work[ki + iv * *n], &vl[ki * vl_dim1 + 1],
- &c__1);
- sscal_(n, &work[ki + 1 + (iv + 1) * *n], &vl[(ki + 1)
- * vl_dim1 + 1], &c__1);
- }
-
- emax = 0.f;
- i__3 = *n;
- for (k = 1; k <= i__3; ++k) {
- /* Computing MAX */
- r__3 = emax, r__4 = (r__1 = vl[k + ki * vl_dim1], abs(
- r__1)) + (r__2 = vl[k + (ki + 1) * vl_dim1],
- abs(r__2));
- emax = f2cmax(r__3,r__4);
- /* L240: */
- }
- remax = 1.f / emax;
- sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
- sscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);
-
- } else {
- /* ------------------------------ */
- /* version 2: back-transform block of vectors with GEMM */
- /* zero out above vector */
- /* could go from KI-NV+1 to KI-1 */
- i__3 = ki - 1;
- for (k = 1; k <= i__3; ++k) {
- work[k + iv * *n] = 0.f;
- work[k + (iv + 1) * *n] = 0.f;
- }
- iscomplex[iv - 1] = ip;
- iscomplex[iv] = -ip;
- ++iv;
- /* back-transform and normalization is done below */
- }
- }
- if (nb > 1) {
- /* -------------------------------------------------------- */
- /* Blocked version of back-transform */
- /* For complex case, KI2 includes both vectors (KI and KI+1) */
- if (ip == 0) {
- ki2 = ki;
- } else {
- ki2 = ki + 1;
- }
- /* Columns 1:IV of work are valid vectors. */
- /* When the number of vectors stored reaches NB-1 or NB, */
- /* or if this was last vector, do the GEMM */
- if (iv >= nb - 1 || ki2 == *n) {
- i__3 = *n - ki2 + iv;
- sgemm_("N", "N", n, &iv, &i__3, &c_b29, &vl[(ki2 - iv + 1)
- * vl_dim1 + 1], ldvl, &work[ki2 - iv + 1 + *n],
- n, &c_b17, &work[(nb + 1) * *n + 1], n);
- /* normalize vectors */
- i__3 = iv;
- for (k = 1; k <= i__3; ++k) {
- if (iscomplex[k - 1] == 0) {
- /* real eigenvector */
- ii = isamax_(n, &work[(nb + k) * *n + 1], &c__1);
- remax = 1.f / (r__1 = work[ii + (nb + k) * *n],
- abs(r__1));
- } else if (iscomplex[k - 1] == 1) {
- /* first eigenvector of conjugate pair */
- emax = 0.f;
- i__4 = *n;
- for (ii = 1; ii <= i__4; ++ii) {
- /* Computing MAX */
- r__3 = emax, r__4 = (r__1 = work[ii + (nb + k)
- * *n], abs(r__1)) + (r__2 = work[ii
- + (nb + k + 1) * *n], abs(r__2));
- emax = f2cmax(r__3,r__4);
- }
- remax = 1.f / emax;
- /* else if ISCOMPLEX(K).EQ.-1 */
- /* second eigenvector of conjugate pair */
- /* reuse same REMAX as previous K */
- }
- sscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
- }
- slacpy_("F", n, &iv, &work[(nb + 1) * *n + 1], n, &vl[(
- ki2 - iv + 1) * vl_dim1 + 1], ldvl);
- iv = 1;
- } else {
- ++iv;
- }
- }
-
- /* blocked back-transform */
- ++is;
- if (ip != 0) {
- ++is;
- }
- L260:
- ;
- }
- }
-
- return;
-
- /* End of STREVC3 */
-
- } /* strevc3_ */
|