|
- *> \brief \b STPRFS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download STPRFS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stprfs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stprfs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stprfs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
- * FERR, BERR, WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER INFO, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
- * $ WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STPRFS provides error bounds and backward error estimates for the
- *> solution to a system of linear equations with a triangular packed
- *> coefficient matrix.
- *>
- *> The solution matrix X must be computed by STPTRS or some other
- *> means before entering this routine. STPRFS does not do iterative
- *> refinement because doing so cannot improve the backward error.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': A is upper triangular;
- *> = 'L': A is lower triangular.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> = 'N': A is non-unit triangular;
- *> = 'U': A is unit triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is REAL array, dimension (N*(N+1)/2)
- *> The upper or lower triangular matrix A, packed columnwise in
- *> a linear array. The j-th column of A is stored in the array
- *> AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *> If DIAG = 'U', the diagonal elements of A are not referenced
- *> and are assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> The solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE STPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
- $ FERR, BERR, WORK, IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER INFO, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
- $ WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN, NOUNIT, UPPER
- CHARACTER TRANST
- INTEGER I, J, K, KASE, KC, NZ
- REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, SLACN2, STPMV, STPSV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH
- EXTERNAL LSAME, SLAMCH
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- NOTRAN = LSAME( TRANS, 'N' )
- NOUNIT = LSAME( DIAG, 'N' )
- *
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
- $ LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'STPRFS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
- DO 10 J = 1, NRHS
- FERR( J ) = ZERO
- BERR( J ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- IF( NOTRAN ) THEN
- TRANST = 'T'
- ELSE
- TRANST = 'N'
- END IF
- *
- * NZ = maximum number of nonzero elements in each row of A, plus 1
- *
- NZ = N + 1
- EPS = SLAMCH( 'Epsilon' )
- SAFMIN = SLAMCH( 'Safe minimum' )
- SAFE1 = NZ*SAFMIN
- SAFE2 = SAFE1 / EPS
- *
- * Do for each right hand side
- *
- DO 250 J = 1, NRHS
- *
- * Compute residual R = B - op(A) * X,
- * where op(A) = A or A**T, depending on TRANS.
- *
- CALL SCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
- CALL STPMV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
- CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
- *
- * Compute componentwise relative backward error from formula
- *
- * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
- *
- * where abs(Z) is the componentwise absolute value of the matrix
- * or vector Z. If the i-th component of the denominator is less
- * than SAFE2, then SAFE1 is added to the i-th components of the
- * numerator and denominator before dividing.
- *
- DO 20 I = 1, N
- WORK( I ) = ABS( B( I, J ) )
- 20 CONTINUE
- *
- IF( NOTRAN ) THEN
- *
- * Compute abs(A)*abs(X) + abs(B).
- *
- IF( UPPER ) THEN
- KC = 1
- IF( NOUNIT ) THEN
- DO 40 K = 1, N
- XK = ABS( X( K, J ) )
- DO 30 I = 1, K
- WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
- 30 CONTINUE
- KC = KC + K
- 40 CONTINUE
- ELSE
- DO 60 K = 1, N
- XK = ABS( X( K, J ) )
- DO 50 I = 1, K - 1
- WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
- 50 CONTINUE
- WORK( K ) = WORK( K ) + XK
- KC = KC + K
- 60 CONTINUE
- END IF
- ELSE
- KC = 1
- IF( NOUNIT ) THEN
- DO 80 K = 1, N
- XK = ABS( X( K, J ) )
- DO 70 I = K, N
- WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
- 70 CONTINUE
- KC = KC + N - K + 1
- 80 CONTINUE
- ELSE
- DO 100 K = 1, N
- XK = ABS( X( K, J ) )
- DO 90 I = K + 1, N
- WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
- 90 CONTINUE
- WORK( K ) = WORK( K ) + XK
- KC = KC + N - K + 1
- 100 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Compute abs(A**T)*abs(X) + abs(B).
- *
- IF( UPPER ) THEN
- KC = 1
- IF( NOUNIT ) THEN
- DO 120 K = 1, N
- S = ZERO
- DO 110 I = 1, K
- S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
- 110 CONTINUE
- WORK( K ) = WORK( K ) + S
- KC = KC + K
- 120 CONTINUE
- ELSE
- DO 140 K = 1, N
- S = ABS( X( K, J ) )
- DO 130 I = 1, K - 1
- S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
- 130 CONTINUE
- WORK( K ) = WORK( K ) + S
- KC = KC + K
- 140 CONTINUE
- END IF
- ELSE
- KC = 1
- IF( NOUNIT ) THEN
- DO 160 K = 1, N
- S = ZERO
- DO 150 I = K, N
- S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
- 150 CONTINUE
- WORK( K ) = WORK( K ) + S
- KC = KC + N - K + 1
- 160 CONTINUE
- ELSE
- DO 180 K = 1, N
- S = ABS( X( K, J ) )
- DO 170 I = K + 1, N
- S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
- 170 CONTINUE
- WORK( K ) = WORK( K ) + S
- KC = KC + N - K + 1
- 180 CONTINUE
- END IF
- END IF
- END IF
- S = ZERO
- DO 190 I = 1, N
- IF( WORK( I ).GT.SAFE2 ) THEN
- S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
- ELSE
- S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
- $ ( WORK( I )+SAFE1 ) )
- END IF
- 190 CONTINUE
- BERR( J ) = S
- *
- * Bound error from formula
- *
- * norm(X - XTRUE) / norm(X) .le. FERR =
- * norm( abs(inv(op(A)))*
- * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
- *
- * where
- * norm(Z) is the magnitude of the largest component of Z
- * inv(op(A)) is the inverse of op(A)
- * abs(Z) is the componentwise absolute value of the matrix or
- * vector Z
- * NZ is the maximum number of nonzeros in any row of A, plus 1
- * EPS is machine epsilon
- *
- * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
- * is incremented by SAFE1 if the i-th component of
- * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
- *
- * Use SLACN2 to estimate the infinity-norm of the matrix
- * inv(op(A)) * diag(W),
- * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
- *
- DO 200 I = 1, N
- IF( WORK( I ).GT.SAFE2 ) THEN
- WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
- ELSE
- WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
- END IF
- 200 CONTINUE
- *
- KASE = 0
- 210 CONTINUE
- CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
- $ KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- *
- * Multiply by diag(W)*inv(op(A)**T).
- *
- CALL STPSV( UPLO, TRANST, DIAG, N, AP, WORK( N+1 ), 1 )
- DO 220 I = 1, N
- WORK( N+I ) = WORK( I )*WORK( N+I )
- 220 CONTINUE
- ELSE
- *
- * Multiply by inv(op(A))*diag(W).
- *
- DO 230 I = 1, N
- WORK( N+I ) = WORK( I )*WORK( N+I )
- 230 CONTINUE
- CALL STPSV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
- END IF
- GO TO 210
- END IF
- *
- * Normalize error.
- *
- LSTRES = ZERO
- DO 240 I = 1, N
- LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
- 240 CONTINUE
- IF( LSTRES.NE.ZERO )
- $ FERR( J ) = FERR( J ) / LSTRES
- *
- 250 CONTINUE
- *
- RETURN
- *
- * End of STPRFS
- *
- END
|