|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static real c_b19 = -1.f;
-
- /* > \brief \b STPRFS */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download STPRFS + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stprfs.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stprfs.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stprfs.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE STPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, */
- /* FERR, BERR, WORK, IWORK, INFO ) */
-
- /* CHARACTER DIAG, TRANS, UPLO */
- /* INTEGER INFO, LDB, LDX, N, NRHS */
- /* INTEGER IWORK( * ) */
- /* REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ), */
- /* $ WORK( * ), X( LDX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STPRFS provides error bounds and backward error estimates for the */
- /* > solution to a system of linear equations with a triangular packed */
- /* > coefficient matrix. */
- /* > */
- /* > The solution matrix X must be computed by STPTRS or some other */
- /* > means before entering this routine. STPRFS does not do iterative */
- /* > refinement because doing so cannot improve the backward error. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': A is upper triangular; */
- /* > = 'L': A is lower triangular. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > Specifies the form of the system of equations: */
- /* > = 'N': A * X = B (No transpose) */
- /* > = 'T': A**T * X = B (Transpose) */
- /* > = 'C': A**H * X = B (Conjugate transpose = Transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIAG */
- /* > \verbatim */
- /* > DIAG is CHARACTER*1 */
- /* > = 'N': A is non-unit triangular; */
- /* > = 'U': A is unit triangular. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrices B and X. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] AP */
- /* > \verbatim */
- /* > AP is REAL array, dimension (N*(N+1)/2) */
- /* > The upper or lower triangular matrix A, packed columnwise in */
- /* > a linear array. The j-th column of A is stored in the array */
- /* > AP as follows: */
- /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
- /* > If DIAG = 'U', the diagonal elements of A are not referenced */
- /* > and are assumed to be 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB,NRHS) */
- /* > The right hand side matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] X */
- /* > \verbatim */
- /* > X is REAL array, dimension (LDX,NRHS) */
- /* > The solution matrix X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] FERR */
- /* > \verbatim */
- /* > FERR is REAL array, dimension (NRHS) */
- /* > The estimated forward error bound for each solution vector */
- /* > X(j) (the j-th column of the solution matrix X). */
- /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* > is an estimated upper bound for the magnitude of the largest */
- /* > element in (X(j) - XTRUE) divided by the magnitude of the */
- /* > largest element in X(j). The estimate is as reliable as */
- /* > the estimate for RCOND, and is almost always a slight */
- /* > overestimate of the true error. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BERR */
- /* > \verbatim */
- /* > BERR is REAL array, dimension (NRHS) */
- /* > The componentwise relative backward error of each solution */
- /* > vector X(j) (i.e., the smallest relative change in */
- /* > any element of A or B that makes X(j) an exact solution). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (3*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void stprfs_(char *uplo, char *trans, char *diag, integer *n,
- integer *nrhs, real *ap, real *b, integer *ldb, real *x, integer *ldx,
- real *ferr, real *berr, real *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3;
- real r__1, r__2, r__3;
-
- /* Local variables */
- integer kase;
- real safe1, safe2;
- integer i__, j, k;
- real s;
- extern logical lsame_(char *, char *);
- integer isave[3];
- logical upper;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *), saxpy_(integer *, real *, real *, integer *, real *,
- integer *), stpmv_(char *, char *, char *, integer *, real *,
- real *, integer *), stpsv_(char *, char *,
- char *, integer *, real *, real *, integer *), slacn2_(integer *, real *, real *, integer *, real *,
- integer *, integer *);
- integer kc;
- real xk;
- extern real slamch_(char *);
- integer nz;
- real safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical notran;
- char transt[1];
- logical nounit;
- real lstres, eps;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --ap;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- notran = lsame_(trans, "N");
- nounit = lsame_(diag, "N");
-
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (! notran && ! lsame_(trans, "T") && !
- lsame_(trans, "C")) {
- *info = -2;
- } else if (! nounit && ! lsame_(diag, "U")) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*nrhs < 0) {
- *info = -5;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -8;
- } else if (*ldx < f2cmax(1,*n)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("STPRFS", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0 || *nrhs == 0) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- ferr[j] = 0.f;
- berr[j] = 0.f;
- /* L10: */
- }
- return;
- }
-
- if (notran) {
- *(unsigned char *)transt = 'T';
- } else {
- *(unsigned char *)transt = 'N';
- }
-
- /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
-
- nz = *n + 1;
- eps = slamch_("Epsilon");
- safmin = slamch_("Safe minimum");
- safe1 = nz * safmin;
- safe2 = safe1 / eps;
-
- /* Do for each right hand side */
-
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
-
- /* Compute residual R = B - op(A) * X, */
- /* where op(A) = A or A**T, depending on TRANS. */
-
- scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
- stpmv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1);
- saxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
-
- /* Compute componentwise relative backward error from formula */
-
- /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
-
- /* where abs(Z) is the componentwise absolute value of the matrix */
- /* or vector Z. If the i-th component of the denominator is less */
- /* than SAFE2, then SAFE1 is added to the i-th components of the */
- /* numerator and denominator before dividing. */
-
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__] = (r__1 = b[i__ + j * b_dim1], abs(r__1));
- /* L20: */
- }
-
- if (notran) {
-
- /* Compute abs(A)*abs(X) + abs(B). */
-
- if (upper) {
- kc = 1;
- if (nounit) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- xk = (r__1 = x[k + j * x_dim1], abs(r__1));
- i__3 = k;
- for (i__ = 1; i__ <= i__3; ++i__) {
- work[i__] += (r__1 = ap[kc + i__ - 1], abs(r__1))
- * xk;
- /* L30: */
- }
- kc += k;
- /* L40: */
- }
- } else {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- xk = (r__1 = x[k + j * x_dim1], abs(r__1));
- i__3 = k - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- work[i__] += (r__1 = ap[kc + i__ - 1], abs(r__1))
- * xk;
- /* L50: */
- }
- work[k] += xk;
- kc += k;
- /* L60: */
- }
- }
- } else {
- kc = 1;
- if (nounit) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- xk = (r__1 = x[k + j * x_dim1], abs(r__1));
- i__3 = *n;
- for (i__ = k; i__ <= i__3; ++i__) {
- work[i__] += (r__1 = ap[kc + i__ - k], abs(r__1))
- * xk;
- /* L70: */
- }
- kc = kc + *n - k + 1;
- /* L80: */
- }
- } else {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- xk = (r__1 = x[k + j * x_dim1], abs(r__1));
- i__3 = *n;
- for (i__ = k + 1; i__ <= i__3; ++i__) {
- work[i__] += (r__1 = ap[kc + i__ - k], abs(r__1))
- * xk;
- /* L90: */
- }
- work[k] += xk;
- kc = kc + *n - k + 1;
- /* L100: */
- }
- }
- }
- } else {
-
- /* Compute abs(A**T)*abs(X) + abs(B). */
-
- if (upper) {
- kc = 1;
- if (nounit) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- s = 0.f;
- i__3 = k;
- for (i__ = 1; i__ <= i__3; ++i__) {
- s += (r__1 = ap[kc + i__ - 1], abs(r__1)) * (r__2
- = x[i__ + j * x_dim1], abs(r__2));
- /* L110: */
- }
- work[k] += s;
- kc += k;
- /* L120: */
- }
- } else {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- s = (r__1 = x[k + j * x_dim1], abs(r__1));
- i__3 = k - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- s += (r__1 = ap[kc + i__ - 1], abs(r__1)) * (r__2
- = x[i__ + j * x_dim1], abs(r__2));
- /* L130: */
- }
- work[k] += s;
- kc += k;
- /* L140: */
- }
- }
- } else {
- kc = 1;
- if (nounit) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- s = 0.f;
- i__3 = *n;
- for (i__ = k; i__ <= i__3; ++i__) {
- s += (r__1 = ap[kc + i__ - k], abs(r__1)) * (r__2
- = x[i__ + j * x_dim1], abs(r__2));
- /* L150: */
- }
- work[k] += s;
- kc = kc + *n - k + 1;
- /* L160: */
- }
- } else {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- s = (r__1 = x[k + j * x_dim1], abs(r__1));
- i__3 = *n;
- for (i__ = k + 1; i__ <= i__3; ++i__) {
- s += (r__1 = ap[kc + i__ - k], abs(r__1)) * (r__2
- = x[i__ + j * x_dim1], abs(r__2));
- /* L170: */
- }
- work[k] += s;
- kc = kc + *n - k + 1;
- /* L180: */
- }
- }
- }
- }
- s = 0.f;
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (work[i__] > safe2) {
- /* Computing MAX */
- r__2 = s, r__3 = (r__1 = work[*n + i__], abs(r__1)) / work[
- i__];
- s = f2cmax(r__2,r__3);
- } else {
- /* Computing MAX */
- r__2 = s, r__3 = ((r__1 = work[*n + i__], abs(r__1)) + safe1)
- / (work[i__] + safe1);
- s = f2cmax(r__2,r__3);
- }
- /* L190: */
- }
- berr[j] = s;
-
- /* Bound error from formula */
-
- /* norm(X - XTRUE) / norm(X) .le. FERR = */
- /* norm( abs(inv(op(A)))* */
- /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
-
- /* where */
- /* norm(Z) is the magnitude of the largest component of Z */
- /* inv(op(A)) is the inverse of op(A) */
- /* abs(Z) is the componentwise absolute value of the matrix or */
- /* vector Z */
- /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
- /* EPS is machine epsilon */
-
- /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
- /* is incremented by SAFE1 if the i-th component of */
- /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
-
- /* Use SLACN2 to estimate the infinity-norm of the matrix */
- /* inv(op(A)) * diag(W), */
- /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
-
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (work[i__] > safe2) {
- work[i__] = (r__1 = work[*n + i__], abs(r__1)) + nz * eps *
- work[i__];
- } else {
- work[i__] = (r__1 = work[*n + i__], abs(r__1)) + nz * eps *
- work[i__] + safe1;
- }
- /* L200: */
- }
-
- kase = 0;
- L210:
- slacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
- kase, isave);
- if (kase != 0) {
- if (kase == 1) {
-
- /* Multiply by diag(W)*inv(op(A)**T). */
-
- stpsv_(uplo, transt, diag, n, &ap[1], &work[*n + 1], &c__1);
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[*n + i__] = work[i__] * work[*n + i__];
- /* L220: */
- }
- } else {
-
- /* Multiply by inv(op(A))*diag(W). */
-
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[*n + i__] = work[i__] * work[*n + i__];
- /* L230: */
- }
- stpsv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1);
- }
- goto L210;
- }
-
- /* Normalize error. */
-
- lstres = 0.f;
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- r__2 = lstres, r__3 = (r__1 = x[i__ + j * x_dim1], abs(r__1));
- lstres = f2cmax(r__2,r__3);
- /* L240: */
- }
- if (lstres != 0.f) {
- ferr[j] /= lstres;
- }
-
- /* L250: */
- }
-
- return;
-
- /* End of STPRFS */
-
- } /* stprfs_ */
|