|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static real c_b19 = 1.f;
- static real c_b21 = 0.f;
- static integer c__2 = 2;
- static logical c_false = FALSE_;
- static integer c__3 = 3;
-
- /* > \brief \b STGSNA */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download STGSNA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsna.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsna.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsna.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE STGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, */
- /* LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, */
- /* IWORK, INFO ) */
-
- /* CHARACTER HOWMNY, JOB */
- /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* INTEGER IWORK( * ) */
- /* REAL A( LDA, * ), B( LDB, * ), DIF( * ), S( * ), */
- /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STGSNA estimates reciprocal condition numbers for specified */
- /* > eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
- /* > generalized real Schur canonical form (or of any matrix pair */
- /* > (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where */
- /* > Z**T denotes the transpose of Z. */
- /* > */
- /* > (A, B) must be in generalized real Schur form (as returned by SGGES), */
- /* > i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
- /* > blocks. B is upper triangular. */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > Specifies whether condition numbers are required for */
- /* > eigenvalues (S) or eigenvectors (DIF): */
- /* > = 'E': for eigenvalues only (S); */
- /* > = 'V': for eigenvectors only (DIF); */
- /* > = 'B': for both eigenvalues and eigenvectors (S and DIF). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] HOWMNY */
- /* > \verbatim */
- /* > HOWMNY is CHARACTER*1 */
- /* > = 'A': compute condition numbers for all eigenpairs; */
- /* > = 'S': compute condition numbers for selected eigenpairs */
- /* > specified by the array SELECT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
- /* > condition numbers are required. To select condition numbers */
- /* > for the eigenpair corresponding to a real eigenvalue w(j), */
- /* > SELECT(j) must be set to .TRUE.. To select condition numbers */
- /* > corresponding to a complex conjugate pair of eigenvalues w(j) */
- /* > and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
- /* > set to .TRUE.. */
- /* > If HOWMNY = 'A', SELECT is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the square matrix pair (A, B). N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > The upper quasi-triangular matrix A in the pair (A,B). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB,N) */
- /* > The upper triangular matrix B in the pair (A,B). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is REAL array, dimension (LDVL,M) */
- /* > If JOB = 'E' or 'B', VL must contain left eigenvectors of */
- /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
- /* > and SELECT. The eigenvectors must be stored in consecutive */
- /* > columns of VL, as returned by STGEVC. */
- /* > If JOB = 'V', VL is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. LDVL >= 1. */
- /* > If JOB = 'E' or 'B', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VR */
- /* > \verbatim */
- /* > VR is REAL array, dimension (LDVR,M) */
- /* > If JOB = 'E' or 'B', VR must contain right eigenvectors of */
- /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
- /* > and SELECT. The eigenvectors must be stored in consecutive */
- /* > columns ov VR, as returned by STGEVC. */
- /* > If JOB = 'V', VR is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. LDVR >= 1. */
- /* > If JOB = 'E' or 'B', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL array, dimension (MM) */
- /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
- /* > selected eigenvalues, stored in consecutive elements of the */
- /* > array. For a complex conjugate pair of eigenvalues two */
- /* > consecutive elements of S are set to the same value. Thus */
- /* > S(j), DIF(j), and the j-th columns of VL and VR all */
- /* > correspond to the same eigenpair (but not in general the */
- /* > j-th eigenpair, unless all eigenpairs are selected). */
- /* > If JOB = 'V', S is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DIF */
- /* > \verbatim */
- /* > DIF is REAL array, dimension (MM) */
- /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
- /* > numbers of the selected eigenvectors, stored in consecutive */
- /* > elements of the array. For a complex eigenvector two */
- /* > consecutive elements of DIF are set to the same value. If */
- /* > the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
- /* > is set to 0; this can only occur when the true value would be */
- /* > very small anyway. */
- /* > If JOB = 'E', DIF is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of elements in the arrays S and DIF. MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of elements of the arrays S and DIF used to store */
- /* > the specified condition numbers; for each selected real */
- /* > eigenvalue one element is used, and for each selected complex */
- /* > conjugate pair of eigenvalues, two elements are used. */
- /* > If HOWMNY = 'A', M is set to N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
- /* > If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N + 6) */
- /* > If JOB = 'E', IWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > =0: Successful exit */
- /* > <0: If INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The reciprocal of the condition number of a generalized eigenvalue */
- /* > w = (a, b) is defined as */
- /* > */
- /* > S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v)) */
- /* > */
- /* > where u and v are the left and right eigenvectors of (A, B) */
- /* > corresponding to w; |z| denotes the absolute value of the complex */
- /* > number, and norm(u) denotes the 2-norm of the vector u. */
- /* > The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv) */
- /* > of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
- /* > singular and S(I) = -1 is returned. */
- /* > */
- /* > An approximate error bound on the chordal distance between the i-th */
- /* > computed generalized eigenvalue w and the corresponding exact */
- /* > eigenvalue lambda is */
- /* > */
- /* > chord(w, lambda) <= EPS * norm(A, B) / S(I) */
- /* > */
- /* > where EPS is the machine precision. */
- /* > */
- /* > The reciprocal of the condition number DIF(i) of right eigenvector u */
- /* > and left eigenvector v corresponding to the generalized eigenvalue w */
- /* > is defined as follows: */
- /* > */
- /* > a) If the i-th eigenvalue w = (a,b) is real */
- /* > */
- /* > Suppose U and V are orthogonal transformations such that */
- /* > */
- /* > U**T*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 */
- /* > ( 0 S22 ),( 0 T22 ) n-1 */
- /* > 1 n-1 1 n-1 */
- /* > */
- /* > Then the reciprocal condition number DIF(i) is */
- /* > */
- /* > Difl((a, b), (S22, T22)) = sigma-f2cmin( Zl ), */
- /* > */
- /* > where sigma-f2cmin(Zl) denotes the smallest singular value of the */
- /* > 2(n-1)-by-2(n-1) matrix */
- /* > */
- /* > Zl = [ kron(a, In-1) -kron(1, S22) ] */
- /* > [ kron(b, In-1) -kron(1, T22) ] . */
- /* > */
- /* > Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
- /* > Kronecker product between the matrices X and Y. */
- /* > */
- /* > Note that if the default method for computing DIF(i) is wanted */
- /* > (see SLATDF), then the parameter DIFDRI (see below) should be */
- /* > changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). */
- /* > See STGSYL for more details. */
- /* > */
- /* > b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
- /* > */
- /* > Suppose U and V are orthogonal transformations such that */
- /* > */
- /* > U**T*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 */
- /* > ( 0 S22 ),( 0 T22) n-2 */
- /* > 2 n-2 2 n-2 */
- /* > */
- /* > and (S11, T11) corresponds to the complex conjugate eigenvalue */
- /* > pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
- /* > that */
- /* > */
- /* > U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 ) */
- /* > ( 0 s22 ) ( 0 t22 ) */
- /* > */
- /* > where the generalized eigenvalues w = s11/t11 and */
- /* > conjg(w) = s22/t22. */
- /* > */
- /* > Then the reciprocal condition number DIF(i) is bounded by */
- /* > */
- /* > f2cmin( d1, f2cmax( 1, |real(s11)/real(s22)| )*d2 ) */
- /* > */
- /* > where, d1 = Difl((s11, t11), (s22, t22)) = sigma-f2cmin(Z1), where */
- /* > Z1 is the complex 2-by-2 matrix */
- /* > */
- /* > Z1 = [ s11 -s22 ] */
- /* > [ t11 -t22 ], */
- /* > */
- /* > This is done by computing (using real arithmetic) the */
- /* > roots of the characteristical polynomial det(Z1**T * Z1 - lambda I), */
- /* > where Z1**T denotes the transpose of Z1 and det(X) denotes */
- /* > the determinant of X. */
- /* > */
- /* > and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
- /* > upper bound on sigma-f2cmin(Z2), where Z2 is (2n-2)-by-(2n-2) */
- /* > */
- /* > Z2 = [ kron(S11**T, In-2) -kron(I2, S22) ] */
- /* > [ kron(T11**T, In-2) -kron(I2, T22) ] */
- /* > */
- /* > Note that if the default method for computing DIF is wanted (see */
- /* > SLATDF), then the parameter DIFDRI (see below) should be changed */
- /* > from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL */
- /* > for more details. */
- /* > */
- /* > For each eigenvalue/vector specified by SELECT, DIF stores a */
- /* > Frobenius norm-based estimate of Difl. */
- /* > */
- /* > An approximate error bound for the i-th computed eigenvector VL(i) or */
- /* > VR(i) is given by */
- /* > */
- /* > EPS * norm(A, B) / DIF(i). */
- /* > */
- /* > See ref. [2-3] for more details and further references. */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* > */
- /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* > Estimation: Theory, Algorithms and Software, */
- /* > Report UMINF - 94.04, Department of Computing Science, Umea */
- /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
- /* > Note 87. To appear in Numerical Algorithms, 1996. */
- /* > */
- /* > [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* > for Solving the Generalized Sylvester Equation and Estimating the */
- /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* > Department of Computing Science, Umea University, S-901 87 Umea, */
- /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* > Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
- /* > No 1, 1996. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void stgsna_(char *job, char *howmny, logical *select,
- integer *n, real *a, integer *lda, real *b, integer *ldb, real *vl,
- integer *ldvl, real *vr, integer *ldvr, real *s, real *dif, integer *
- mm, integer *m, real *work, integer *lwork, integer *iwork, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2;
- real r__1, r__2;
-
- /* Local variables */
- real beta, cond;
- logical pair;
- integer ierr;
- real uhav, uhbv;
- integer ifst;
- real lnrm;
- extern real sdot_(integer *, real *, integer *, real *, integer *);
- integer ilst;
- real rnrm;
- extern /* Subroutine */ void slag2_(real *, integer *, real *, integer *,
- real *, real *, real *, real *, real *, real *);
- extern real snrm2_(integer *, real *, integer *);
- real root1, root2;
- integer i__, k;
- real scale;
- extern logical lsame_(char *, char *);
- real uhavi, uhbvi;
- extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
- real *, integer *, real *, integer *, real *, real *, integer *);
- real tmpii, c1, c2;
- integer lwmin;
- logical wants;
- real tmpir;
- integer n1, n2;
- real tmpri, dummy[1], tmprr;
- extern real slapy2_(real *, real *);
- real dummy1[1];
- integer ks;
- real alphai;
- integer iz;
- real alphar;
- extern real slamch_(char *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical wantbh, wantdf;
- extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *), stgexc_(logical *, logical
- *, integer *, real *, integer *, real *, integer *, real *,
- integer *, real *, integer *, integer *, integer *, real *,
- integer *, integer *);
- logical somcon;
- real alprqt, smlnum;
- logical lquery;
- extern /* Subroutine */ void stgsyl_(char *, integer *, integer *, integer
- *, real *, integer *, real *, integer *, real *, integer *, real *
- , integer *, real *, integer *, real *, integer *, real *, real *,
- real *, integer *, integer *, integer *);
- real eps;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --s;
- --dif;
- --work;
- --iwork;
-
- /* Function Body */
- wantbh = lsame_(job, "B");
- wants = lsame_(job, "E") || wantbh;
- wantdf = lsame_(job, "V") || wantbh;
-
- somcon = lsame_(howmny, "S");
-
- *info = 0;
- lquery = *lwork == -1;
-
- if (! wants && ! wantdf) {
- *info = -1;
- } else if (! lsame_(howmny, "A") && ! somcon) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -8;
- } else if (wants && *ldvl < *n) {
- *info = -10;
- } else if (wants && *ldvr < *n) {
- *info = -12;
- } else {
-
- /* Set M to the number of eigenpairs for which condition numbers */
- /* are required, and test MM. */
-
- if (somcon) {
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] == 0.f) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
-
- if (*n == 0) {
- lwmin = 1;
- } else if (lsame_(job, "V") || lsame_(job,
- "B")) {
- lwmin = (*n << 1) * (*n + 2) + 16;
- } else {
- lwmin = *n;
- }
- work[1] = (real) lwmin;
-
- if (*mm < *m) {
- *info = -15;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -18;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("STGSNA", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S") / eps;
- ks = 0;
- pair = FALSE_;
-
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
-
- /* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
-
- if (pair) {
- pair = FALSE_;
- goto L20;
- } else {
- if (k < *n) {
- pair = a[k + 1 + k * a_dim1] != 0.f;
- }
- }
-
- /* Determine whether condition numbers are required for the k-th */
- /* eigenpair. */
-
- if (somcon) {
- if (pair) {
- if (! select[k] && ! select[k + 1]) {
- goto L20;
- }
- } else {
- if (! select[k]) {
- goto L20;
- }
- }
- }
-
- ++ks;
-
- if (wants) {
-
- /* Compute the reciprocal condition number of the k-th */
- /* eigenvalue. */
-
- if (pair) {
-
- /* Complex eigenvalue pair. */
-
- r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
- rnrm = slapy2_(&r__1, &r__2);
- r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
- lnrm = slapy2_(&r__1, &r__2);
- sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) *
- vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
- tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- uhav = tmprr + tmpii;
- uhavi = tmpir - tmpri;
- sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) *
- vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
- tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- uhbv = tmprr + tmpii;
- uhbvi = tmpir - tmpri;
- uhav = slapy2_(&uhav, &uhavi);
- uhbv = slapy2_(&uhbv, &uhbvi);
- cond = slapy2_(&uhav, &uhbv);
- s[ks] = cond / (rnrm * lnrm);
- s[ks + 1] = s[ks];
-
- } else {
-
- /* Real eigenvalue. */
-
- rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- uhav = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
- ;
- sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- uhbv = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
- ;
- cond = slapy2_(&uhav, &uhbv);
- if (cond == 0.f) {
- s[ks] = -1.f;
- } else {
- s[ks] = cond / (rnrm * lnrm);
- }
- }
- }
-
- if (wantdf) {
- if (*n == 1) {
- dif[ks] = slapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
- goto L20;
- }
-
- /* Estimate the reciprocal condition number of the k-th */
- /* eigenvectors. */
- if (pair) {
-
- /* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)). */
- /* Compute the eigenvalue(s) at position K. */
-
- work[1] = a[k + k * a_dim1];
- work[2] = a[k + 1 + k * a_dim1];
- work[3] = a[k + (k + 1) * a_dim1];
- work[4] = a[k + 1 + (k + 1) * a_dim1];
- work[5] = b[k + k * b_dim1];
- work[6] = b[k + 1 + k * b_dim1];
- work[7] = b[k + (k + 1) * b_dim1];
- work[8] = b[k + 1 + (k + 1) * b_dim1];
- r__1 = smlnum * eps;
- slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta, dummy1,
- &alphar, dummy, &alphai);
- alprqt = 1.f;
- c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.f;
- c2 = beta * 4.f * beta * alphai * alphai;
- root1 = c1 + sqrt(c1 * c1 - c2 * 4.f);
- root2 = c2 / root1;
- root1 /= 2.f;
- /* Computing MIN */
- r__1 = sqrt(root1), r__2 = sqrt(root2);
- cond = f2cmin(r__1,r__2);
- }
-
- /* Copy the matrix (A, B) to the array WORK and swap the */
- /* diagonal block beginning at A(k,k) to the (1,1) position. */
-
- slacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
- slacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
- ifst = k;
- ilst = 1;
-
- i__2 = *lwork - (*n << 1) * *n;
- stgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n,
- dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
- n << 1) + 1], &i__2, &ierr);
-
- if (ierr > 0) {
-
- /* Ill-conditioned problem - swap rejected. */
-
- dif[ks] = 0.f;
- } else {
-
- /* Reordering successful, solve generalized Sylvester */
- /* equation for R and L, */
- /* A22 * R - L * A11 = A12 */
- /* B22 * R - L * B11 = B12, */
- /* and compute estimate of Difl((A11,B11), (A22, B22)). */
-
- n1 = 1;
- if (work[2] != 0.f) {
- n1 = 2;
- }
- n2 = *n - n1;
- if (n2 == 0) {
- dif[ks] = cond;
- } else {
- i__ = *n * *n + 1;
- iz = (*n << 1) * *n + 1;
- i__2 = *lwork - (*n << 1) * *n;
- stgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
- &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
- + i__], n, &work[i__], n, &work[n1 + i__], n, &
- scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1],
- &ierr);
-
- if (pair) {
- /* Computing MIN */
- r__1 = f2cmax(1.f,alprqt) * dif[ks];
- dif[ks] = f2cmin(r__1,cond);
- }
- }
- }
- if (pair) {
- dif[ks + 1] = dif[ks];
- }
- }
- if (pair) {
- ++ks;
- }
-
- L20:
- ;
- }
- work[1] = (real) lwmin;
- return;
-
- /* End of STGSNA */
-
- } /* stgsna_ */
|