|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__2 = 2;
- static real c_b28 = 1.f;
-
- /* > \brief \b STGSEN */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download STGSEN + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsen.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsen.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsen.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE STGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, */
- /* ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, */
- /* PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO ) */
-
- /* LOGICAL WANTQ, WANTZ */
- /* INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, */
- /* $ M, N */
- /* REAL PL, PR */
- /* LOGICAL SELECT( * ) */
- /* INTEGER IWORK( * ) */
- /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
- /* $ B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ), */
- /* $ WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STGSEN reorders the generalized real Schur decomposition of a real */
- /* > matrix pair (A, B) (in terms of an orthonormal equivalence trans- */
- /* > formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues */
- /* > appears in the leading diagonal blocks of the upper quasi-triangular */
- /* > matrix A and the upper triangular B. The leading columns of Q and */
- /* > Z form orthonormal bases of the corresponding left and right eigen- */
- /* > spaces (deflating subspaces). (A, B) must be in generalized real */
- /* > Schur canonical form (as returned by SGGES), i.e. A is block upper */
- /* > triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */
- /* > triangular. */
- /* > */
- /* > STGSEN also computes the generalized eigenvalues */
- /* > */
- /* > w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */
- /* > */
- /* > of the reordered matrix pair (A, B). */
- /* > */
- /* > Optionally, STGSEN computes the estimates of reciprocal condition */
- /* > numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
- /* > (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
- /* > between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
- /* > the selected cluster and the eigenvalues outside the cluster, resp., */
- /* > and norms of "projections" onto left and right eigenspaces w.r.t. */
- /* > the selected cluster in the (1,1)-block. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] IJOB */
- /* > \verbatim */
- /* > IJOB is INTEGER */
- /* > Specifies whether condition numbers are required for the */
- /* > cluster of eigenvalues (PL and PR) or the deflating subspaces */
- /* > (Difu and Difl): */
- /* > =0: Only reorder w.r.t. SELECT. No extras. */
- /* > =1: Reciprocal of norms of "projections" onto left and right */
- /* > eigenspaces w.r.t. the selected cluster (PL and PR). */
- /* > =2: Upper bounds on Difu and Difl. F-norm-based estimate */
- /* > (DIF(1:2)). */
- /* > =3: Estimate of Difu and Difl. 1-norm-based estimate */
- /* > (DIF(1:2)). */
- /* > About 5 times as expensive as IJOB = 2. */
- /* > =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
- /* > version to get it all. */
- /* > =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTQ */
- /* > \verbatim */
- /* > WANTQ is LOGICAL */
- /* > .TRUE. : update the left transformation matrix Q; */
- /* > .FALSE.: do not update Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > .TRUE. : update the right transformation matrix Z; */
- /* > .FALSE.: do not update Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > SELECT specifies the eigenvalues in the selected cluster. */
- /* > To select a real eigenvalue w(j), SELECT(j) must be set to */
- /* > .TRUE.. To select a complex conjugate pair of eigenvalues */
- /* > w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
- /* > either SELECT(j) or SELECT(j+1) or both must be set to */
- /* > .TRUE.; a complex conjugate pair of eigenvalues must be */
- /* > either both included in the cluster or both excluded. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension(LDA,N) */
- /* > On entry, the upper quasi-triangular matrix A, with (A, B) in */
- /* > generalized real Schur canonical form. */
- /* > On exit, A is overwritten by the reordered matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension(LDB,N) */
- /* > On entry, the upper triangular matrix B, with (A, B) in */
- /* > generalized real Schur canonical form. */
- /* > On exit, B is overwritten by the reordered matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAR */
- /* > \verbatim */
- /* > ALPHAR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAI */
- /* > \verbatim */
- /* > ALPHAI is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is REAL array, dimension (N) */
- /* > */
- /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
- /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
- /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
- /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
- /* > the real generalized Schur form of (A,B) were further reduced */
- /* > to triangular form using complex unitary transformations. */
- /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
- /* > positive, then the j-th and (j+1)-st eigenvalues are a */
- /* > complex conjugate pair, with ALPHAI(j+1) negative. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is REAL array, dimension (LDQ,N) */
- /* > On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
- /* > On exit, Q has been postmultiplied by the left orthogonal */
- /* > transformation matrix which reorder (A, B); The leading M */
- /* > columns of Q form orthonormal bases for the specified pair of */
- /* > left eigenspaces (deflating subspaces). */
- /* > If WANTQ = .FALSE., Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= 1; */
- /* > and if WANTQ = .TRUE., LDQ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (LDZ,N) */
- /* > On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
- /* > On exit, Z has been postmultiplied by the left orthogonal */
- /* > transformation matrix which reorder (A, B); The leading M */
- /* > columns of Z form orthonormal bases for the specified pair of */
- /* > left eigenspaces (deflating subspaces). */
- /* > If WANTZ = .FALSE., Z is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1; */
- /* > If WANTZ = .TRUE., LDZ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The dimension of the specified pair of left and right eigen- */
- /* > spaces (deflating subspaces). 0 <= M <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PL */
- /* > \verbatim */
- /* > PL is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PR */
- /* > \verbatim */
- /* > PR is REAL */
- /* > */
- /* > If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
- /* > reciprocal of the norm of "projections" onto left and right */
- /* > eigenspaces with respect to the selected cluster. */
- /* > 0 < PL, PR <= 1. */
- /* > If M = 0 or M = N, PL = PR = 1. */
- /* > If IJOB = 0, 2 or 3, PL and PR are not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DIF */
- /* > \verbatim */
- /* > DIF is REAL array, dimension (2). */
- /* > If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
- /* > If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
- /* > Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
- /* > estimates of Difu and Difl. */
- /* > If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
- /* > If IJOB = 0 or 1, DIF is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= 4*N+16. */
- /* > If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */
- /* > If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
- /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LIWORK */
- /* > \verbatim */
- /* > LIWORK is INTEGER */
- /* > The dimension of the array IWORK. LIWORK >= 1. */
- /* > If IJOB = 1, 2 or 4, LIWORK >= N+6. */
- /* > If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */
- /* > */
- /* > If LIWORK = -1, then a workspace query is assumed; the */
- /* > routine only calculates the optimal size of the IWORK array, */
- /* > returns this value as the first entry of the IWORK array, and */
- /* > no error message related to LIWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > =0: Successful exit. */
- /* > <0: If INFO = -i, the i-th argument had an illegal value. */
- /* > =1: Reordering of (A, B) failed because the transformed */
- /* > matrix pair (A, B) would be too far from generalized */
- /* > Schur form; the problem is very ill-conditioned. */
- /* > (A, B) may have been partially reordered. */
- /* > If requested, 0 is returned in DIF(*), PL and PR. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > STGSEN first collects the selected eigenvalues by computing */
- /* > orthogonal U and W that move them to the top left corner of (A, B). */
- /* > In other words, the selected eigenvalues are the eigenvalues of */
- /* > (A11, B11) in: */
- /* > */
- /* > U**T*(A, B)*W = (A11 A12) (B11 B12) n1 */
- /* > ( 0 A22),( 0 B22) n2 */
- /* > n1 n2 n1 n2 */
- /* > */
- /* > where N = n1+n2 and U**T means the transpose of U. The first n1 columns */
- /* > of U and W span the specified pair of left and right eigenspaces */
- /* > (deflating subspaces) of (A, B). */
- /* > */
- /* > If (A, B) has been obtained from the generalized real Schur */
- /* > decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the */
- /* > reordered generalized real Schur form of (C, D) is given by */
- /* > */
- /* > (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T, */
- /* > */
- /* > and the first n1 columns of Q*U and Z*W span the corresponding */
- /* > deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */
- /* > */
- /* > Note that if the selected eigenvalue is sufficiently ill-conditioned, */
- /* > then its value may differ significantly from its value before */
- /* > reordering. */
- /* > */
- /* > The reciprocal condition numbers of the left and right eigenspaces */
- /* > spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
- /* > be returned in DIF(1:2), corresponding to Difu and Difl, resp. */
- /* > */
- /* > The Difu and Difl are defined as: */
- /* > */
- /* > Difu[(A11, B11), (A22, B22)] = sigma-f2cmin( Zu ) */
- /* > and */
- /* > Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */
- /* > */
- /* > where sigma-f2cmin(Zu) is the smallest singular value of the */
- /* > (2*n1*n2)-by-(2*n1*n2) matrix */
- /* > */
- /* > Zu = [ kron(In2, A11) -kron(A22**T, In1) ] */
- /* > [ kron(In2, B11) -kron(B22**T, In1) ]. */
- /* > */
- /* > Here, Inx is the identity matrix of size nx and A22**T is the */
- /* > transpose of A22. kron(X, Y) is the Kronecker product between */
- /* > the matrices X and Y. */
- /* > */
- /* > When DIF(2) is small, small changes in (A, B) can cause large changes */
- /* > in the deflating subspace. An approximate (asymptotic) bound on the */
- /* > maximum angular error in the computed deflating subspaces is */
- /* > */
- /* > EPS * norm((A, B)) / DIF(2), */
- /* > */
- /* > where EPS is the machine precision. */
- /* > */
- /* > The reciprocal norm of the projectors on the left and right */
- /* > eigenspaces associated with (A11, B11) may be returned in PL and PR. */
- /* > They are computed as follows. First we compute L and R so that */
- /* > P*(A, B)*Q is block diagonal, where */
- /* > */
- /* > P = ( I -L ) n1 Q = ( I R ) n1 */
- /* > ( 0 I ) n2 and ( 0 I ) n2 */
- /* > n1 n2 n1 n2 */
- /* > */
- /* > and (L, R) is the solution to the generalized Sylvester equation */
- /* > */
- /* > A11*R - L*A22 = -A12 */
- /* > B11*R - L*B22 = -B12 */
- /* > */
- /* > Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
- /* > An approximate (asymptotic) bound on the average absolute error of */
- /* > the selected eigenvalues is */
- /* > */
- /* > EPS * norm((A, B)) / PL. */
- /* > */
- /* > There are also global error bounds which valid for perturbations up */
- /* > to a certain restriction: A lower bound (x) on the smallest */
- /* > F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
- /* > coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
- /* > (i.e. (A + E, B + F), is */
- /* > */
- /* > x = f2cmin(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*f2cmax(1/PL,1/PR)). */
- /* > */
- /* > An approximate bound on x can be computed from DIF(1:2), PL and PR. */
- /* > */
- /* > If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
- /* > (L', R') and unperturbed (L, R) left and right deflating subspaces */
- /* > associated with the selected cluster in the (1,1)-blocks can be */
- /* > bounded as */
- /* > */
- /* > f2cmax-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
- /* > f2cmax-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */
- /* > */
- /* > See LAPACK User's Guide section 4.11 or the following references */
- /* > for more information. */
- /* > */
- /* > Note that if the default method for computing the Frobenius-norm- */
- /* > based estimate DIF is not wanted (see SLATDF), then the parameter */
- /* > IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF */
- /* > (IJOB = 2 will be used)). See STGSYL for more details. */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* > */
- /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* > Estimation: Theory, Algorithms and Software, */
- /* > Report UMINF - 94.04, Department of Computing Science, Umea */
- /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
- /* > Note 87. To appear in Numerical Algorithms, 1996. */
- /* > */
- /* > [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* > for Solving the Generalized Sylvester Equation and Estimating the */
- /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* > Department of Computing Science, Umea University, S-901 87 Umea, */
- /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* > Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
- /* > 1996. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void stgsen_(integer *ijob, logical *wantq, logical *wantz,
- logical *select, integer *n, real *a, integer *lda, real *b, integer *
- ldb, real *alphar, real *alphai, real *beta, real *q, integer *ldq,
- real *z__, integer *ldz, integer *m, real *pl, real *pr, real *dif,
- real *work, integer *lwork, integer *iwork, integer *liwork, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2;
- real r__1;
-
- /* Local variables */
- integer kase;
- logical pair;
- integer ierr;
- real dsum;
- logical swap;
- extern /* Subroutine */ void slag2_(real *, integer *, real *, integer *,
- real *, real *, real *, real *, real *, real *);
- integer i__, k, isave[3];
- logical wantd;
- integer lwmin;
- logical wantp;
- integer n1, n2;
- extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
- real *, integer *, integer *);
- logical wantd1, wantd2;
- integer kk;
- real dscale;
- integer ks;
- real rdscal;
- extern real slamch_(char *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void slacpy_(
- char *, integer *, integer *, real *, integer *, real *, integer *
- ), stgexc_(logical *, logical *, integer *, real *,
- integer *, real *, integer *, real *, integer *, real *, integer *
- , integer *, integer *, real *, integer *, integer *);
- integer liwmin;
- extern /* Subroutine */ void slassq_(integer *, real *, integer *, real *,
- real *);
- real smlnum;
- integer mn2;
- logical lquery;
- extern /* Subroutine */ void stgsyl_(char *, integer *, integer *, integer
- *, real *, integer *, real *, integer *, real *, integer *, real *
- , integer *, real *, integer *, real *, integer *, real *, real *,
- real *, integer *, integer *, integer *);
- integer ijb;
- real eps;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --dif;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1 || *liwork == -1;
-
- if (*ijob < 0 || *ijob > 5) {
- *info = -1;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldq < 1 || *wantq && *ldq < *n) {
- *info = -14;
- } else if (*ldz < 1 || *wantz && *ldz < *n) {
- *info = -16;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("STGSEN", &i__1, (ftnlen)6);
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S") / eps;
- ierr = 0;
-
- wantp = *ijob == 1 || *ijob >= 4;
- wantd1 = *ijob == 2 || *ijob == 4;
- wantd2 = *ijob == 3 || *ijob == 5;
- wantd = wantd1 || wantd2;
-
- /* Set M to the dimension of the specified pair of deflating */
- /* subspaces. */
-
- *m = 0;
- pair = FALSE_;
- if (! lquery || *ijob != 0) {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] == 0.f) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- }
-
- if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
- /* Computing MAX */
- i__1 = 1, i__2 = (*n << 2) + 16, i__1 = f2cmax(i__1,i__2), i__2 = (*m <<
- 1) * (*n - *m);
- lwmin = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *n + 6;
- liwmin = f2cmax(i__1,i__2);
- } else if (*ijob == 3 || *ijob == 5) {
- /* Computing MAX */
- i__1 = 1, i__2 = (*n << 2) + 16, i__1 = f2cmax(i__1,i__2), i__2 = (*m <<
- 2) * (*n - *m);
- lwmin = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = f2cmax(i__1,i__2), i__2 =
- *n + 6;
- liwmin = f2cmax(i__1,i__2);
- } else {
- /* Computing MAX */
- i__1 = 1, i__2 = (*n << 2) + 16;
- lwmin = f2cmax(i__1,i__2);
- liwmin = 1;
- }
-
- work[1] = (real) lwmin;
- iwork[1] = liwmin;
-
- if (*lwork < lwmin && ! lquery) {
- *info = -22;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -24;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("STGSEN", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible. */
-
- if (*m == *n || *m == 0) {
- if (wantp) {
- *pl = 1.f;
- *pr = 1.f;
- }
- if (wantd) {
- dscale = 0.f;
- dsum = 1.f;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- slassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
- slassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
- /* L20: */
- }
- dif[1] = dscale * sqrt(dsum);
- dif[2] = dif[1];
- }
- goto L60;
- }
-
- /* Collect the selected blocks at the top-left corner of (A, B). */
-
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
-
- swap = select[k];
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] != 0.f) {
- pair = TRUE_;
- swap = swap || select[k + 1];
- }
- }
-
- if (swap) {
- ++ks;
-
- /* Swap the K-th block to position KS. */
- /* Perform the reordering of diagonal blocks in (A, B) */
- /* by orthogonal transformation matrices and update */
- /* Q and Z accordingly (if requested): */
-
- kk = k;
- if (k != ks) {
- stgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk,
- &ks, &work[1], lwork, &ierr);
- }
-
- if (ierr > 0) {
-
- /* Swap is rejected: exit. */
-
- *info = 1;
- if (wantp) {
- *pl = 0.f;
- *pr = 0.f;
- }
- if (wantd) {
- dif[1] = 0.f;
- dif[2] = 0.f;
- }
- goto L60;
- }
-
- if (pair) {
- ++ks;
- }
- }
- }
- /* L30: */
- }
- if (wantp) {
-
- /* Solve generalized Sylvester equation for R and L */
- /* and compute PL and PR. */
-
- n1 = *m;
- n2 = *n - *m;
- i__ = n1 + 1;
- ijb = 0;
- slacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
- slacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 +
- 1], &n1);
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
- , lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ *
- b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
- work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
-
- /* Estimate the reciprocal of norms of "projections" onto left */
- /* and right eigenspaces. */
-
- rdscal = 0.f;
- dsum = 1.f;
- i__1 = n1 * n2;
- slassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
- *pl = rdscal * sqrt(dsum);
- if (*pl == 0.f) {
- *pl = 1.f;
- } else {
- *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
- }
- rdscal = 0.f;
- dsum = 1.f;
- i__1 = n1 * n2;
- slassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
- *pr = rdscal * sqrt(dsum);
- if (*pr == 0.f) {
- *pr = 1.f;
- } else {
- *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
- }
- }
-
- if (wantd) {
-
- /* Compute estimates of Difu and Difl. */
-
- if (wantd1) {
- n1 = *m;
- n2 = *n - *m;
- i__ = n1 + 1;
- ijb = 3;
-
- /* Frobenius norm-based Difu-estimate. */
-
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ *
- a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ +
- i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
- dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
- ierr);
-
- /* Frobenius norm-based Difl-estimate. */
-
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
- a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1],
- ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale,
- &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
- ierr);
- } else {
-
-
- /* Compute 1-norm-based estimates of Difu and Difl using */
- /* reversed communication with SLACN2. In each step a */
- /* generalized Sylvester equation or a transposed variant */
- /* is solved. */
-
- kase = 0;
- n1 = *m;
- n2 = *n - *m;
- i__ = n1 + 1;
- ijb = 0;
- mn2 = (n1 << 1) * n2;
-
- /* 1-norm-based estimate of Difu. */
-
- L40:
- slacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase,
- isave);
- if (kase != 0) {
- if (kase == 1) {
-
- /* Solve generalized Sylvester equation. */
-
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
- i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
- ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
- 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- } else {
-
- /* Solve the transposed variant. */
-
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
- i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
- ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
- 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- }
- goto L40;
- }
- dif[1] = dscale / dif[1];
-
- /* 1-norm-based estimate of Difl. */
-
- L50:
- slacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase,
- isave);
- if (kase != 0) {
- if (kase == 1) {
-
- /* Solve generalized Sylvester equation. */
-
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
- &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
- b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
- 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- } else {
-
- /* Solve the transposed variant. */
-
- i__1 = *lwork - (n1 << 1) * n2;
- stgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
- &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
- b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
- 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
- 1], &i__1, &iwork[1], &ierr);
- }
- goto L50;
- }
- dif[2] = dscale / dif[2];
-
- }
- }
-
- L60:
-
- /* Compute generalized eigenvalues of reordered pair (A, B) and */
- /* normalize the generalized Schur form. */
-
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
-
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] != 0.f) {
- pair = TRUE_;
- }
- }
-
- if (pair) {
-
- /* Compute the eigenvalue(s) at position K. */
-
- work[1] = a[k + k * a_dim1];
- work[2] = a[k + 1 + k * a_dim1];
- work[3] = a[k + (k + 1) * a_dim1];
- work[4] = a[k + 1 + (k + 1) * a_dim1];
- work[5] = b[k + k * b_dim1];
- work[6] = b[k + 1 + k * b_dim1];
- work[7] = b[k + (k + 1) * b_dim1];
- work[8] = b[k + 1 + (k + 1) * b_dim1];
- r__1 = smlnum * eps;
- slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta[k], &
- beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]);
- alphai[k + 1] = -alphai[k];
-
- } else {
-
- if (r_sign(&c_b28, &b[k + k * b_dim1]) < 0.f) {
-
- /* If B(K,K) is negative, make it positive */
-
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[k + i__ * a_dim1] = -a[k + i__ * a_dim1];
- b[k + i__ * b_dim1] = -b[k + i__ * b_dim1];
- if (*wantq) {
- q[i__ + k * q_dim1] = -q[i__ + k * q_dim1];
- }
- /* L80: */
- }
- }
-
- alphar[k] = a[k + k * a_dim1];
- alphai[k] = 0.f;
- beta[k] = b[k + k * b_dim1];
-
- }
- }
- /* L70: */
- }
-
- work[1] = (real) lwmin;
- iwork[1] = liwmin;
-
- return;
-
- /* End of STGSEN */
-
- } /* stgsen_ */
|