|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__10 = 10;
- static integer c__1 = 1;
- static integer c__2 = 2;
- static integer c__3 = 3;
- static integer c__4 = 4;
- static integer c_n1 = -1;
-
- /* > \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat
- rices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SSYEVR + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
- /* ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, */
- /* IWORK, LIWORK, INFO ) */
-
- /* CHARACTER JOBZ, RANGE, UPLO */
- /* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N */
- /* REAL ABSTOL, VL, VU */
- /* INTEGER ISUPPZ( * ), IWORK( * ) */
- /* REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SSYEVR computes selected eigenvalues and, optionally, eigenvectors */
- /* > of a real symmetric matrix A. Eigenvalues and eigenvectors can be */
- /* > selected by specifying either a range of values or a range of */
- /* > indices for the desired eigenvalues. */
- /* > */
- /* > SSYEVR first reduces the matrix A to tridiagonal form T with a call */
- /* > to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute */
- /* > the eigenspectrum using Relatively Robust Representations. SSTEMR */
- /* > computes eigenvalues by the dqds algorithm, while orthogonal */
- /* > eigenvectors are computed from various "good" L D L^T representations */
- /* > (also known as Relatively Robust Representations). Gram-Schmidt */
- /* > orthogonalization is avoided as far as possible. More specifically, */
- /* > the various steps of the algorithm are as follows. */
- /* > */
- /* > For each unreduced block (submatrix) of T, */
- /* > (a) Compute T - sigma I = L D L^T, so that L and D */
- /* > define all the wanted eigenvalues to high relative accuracy. */
- /* > This means that small relative changes in the entries of D and L */
- /* > cause only small relative changes in the eigenvalues and */
- /* > eigenvectors. The standard (unfactored) representation of the */
- /* > tridiagonal matrix T does not have this property in general. */
- /* > (b) Compute the eigenvalues to suitable accuracy. */
- /* > If the eigenvectors are desired, the algorithm attains full */
- /* > accuracy of the computed eigenvalues only right before */
- /* > the corresponding vectors have to be computed, see steps c) and d). */
- /* > (c) For each cluster of close eigenvalues, select a new */
- /* > shift close to the cluster, find a new factorization, and refine */
- /* > the shifted eigenvalues to suitable accuracy. */
- /* > (d) For each eigenvalue with a large enough relative separation compute */
- /* > the corresponding eigenvector by forming a rank revealing twisted */
- /* > factorization. Go back to (c) for any clusters that remain. */
- /* > */
- /* > The desired accuracy of the output can be specified by the input */
- /* > parameter ABSTOL. */
- /* > */
- /* > For more details, see SSTEMR's documentation and: */
- /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
- /* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
- /* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
- /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
- /* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
- /* > 2004. Also LAPACK Working Note 154. */
- /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
- /* > tridiagonal eigenvalue/eigenvector problem", */
- /* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
- /* > UC Berkeley, May 1997. */
- /* > */
- /* > */
- /* > Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested */
- /* > on machines which conform to the ieee-754 floating point standard. */
- /* > SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and */
- /* > when partial spectrum requests are made. */
- /* > */
- /* > Normal execution of SSTEMR may create NaNs and infinities and */
- /* > hence may abort due to a floating point exception in environments */
- /* > which do not handle NaNs and infinities in the ieee standard default */
- /* > manner. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBZ */
- /* > \verbatim */
- /* > JOBZ is CHARACTER*1 */
- /* > = 'N': Compute eigenvalues only; */
- /* > = 'V': Compute eigenvalues and eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RANGE */
- /* > \verbatim */
- /* > RANGE is CHARACTER*1 */
- /* > = 'A': all eigenvalues will be found. */
- /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* > will be found. */
- /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* > For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
- /* > SSTEIN are called */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA, N) */
- /* > On entry, the symmetric matrix A. If UPLO = 'U', the */
- /* > leading N-by-N upper triangular part of A contains the */
- /* > upper triangular part of the matrix A. If UPLO = 'L', */
- /* > the leading N-by-N lower triangular part of A contains */
- /* > the lower triangular part of the matrix A. */
- /* > On exit, the lower triangle (if UPLO='L') or the upper */
- /* > triangle (if UPLO='U') of A, including the diagonal, is */
- /* > destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is REAL */
- /* > If RANGE='V', the lower bound of the interval to */
- /* > be searched for eigenvalues. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VU */
- /* > \verbatim */
- /* > VU is REAL */
- /* > If RANGE='V', the upper bound of the interval to */
- /* > be searched for eigenvalues. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IL */
- /* > \verbatim */
- /* > IL is INTEGER */
- /* > If RANGE='I', the index of the */
- /* > smallest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IU */
- /* > \verbatim */
- /* > IU is INTEGER */
- /* > If RANGE='I', the index of the */
- /* > largest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ABSTOL */
- /* > \verbatim */
- /* > ABSTOL is REAL */
- /* > The absolute error tolerance for the eigenvalues. */
- /* > An approximate eigenvalue is accepted as converged */
- /* > when it is determined to lie in an interval [a,b] */
- /* > of width less than or equal to */
- /* > */
- /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
- /* > */
- /* > where EPS is the machine precision. If ABSTOL is less than */
- /* > or equal to zero, then EPS*|T| will be used in its place, */
- /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
- /* > by reducing A to tridiagonal form. */
- /* > */
- /* > See "Computing Small Singular Values of Bidiagonal Matrices */
- /* > with Guaranteed High Relative Accuracy," by Demmel and */
- /* > Kahan, LAPACK Working Note #3. */
- /* > */
- /* > If high relative accuracy is important, set ABSTOL to */
- /* > SLAMCH( 'Safe minimum' ). Doing so will guarantee that */
- /* > eigenvalues are computed to high relative accuracy when */
- /* > possible in future releases. The current code does not */
- /* > make any guarantees about high relative accuracy, but */
- /* > future releases will. See J. Barlow and J. Demmel, */
- /* > "Computing Accurate Eigensystems of Scaled Diagonally */
- /* > Dominant Matrices", LAPACK Working Note #7, for a discussion */
- /* > of which matrices define their eigenvalues to high relative */
- /* > accuracy. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The total number of eigenvalues found. 0 <= M <= N. */
- /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is REAL array, dimension (N) */
- /* > The first M elements contain the selected eigenvalues in */
- /* > ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (LDZ, f2cmax(1,M)) */
- /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
- /* > contain the orthonormal eigenvectors of the matrix A */
- /* > corresponding to the selected eigenvalues, with the i-th */
- /* > column of Z holding the eigenvector associated with W(i). */
- /* > If JOBZ = 'N', then Z is not referenced. */
- /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
- /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* > is not known in advance and an upper bound must be used. */
- /* > Supplying N columns is always safe. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1, and if */
- /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ISUPPZ */
- /* > \verbatim */
- /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
- /* > The support of the eigenvectors in Z, i.e., the indices */
- /* > indicating the nonzero elements in Z. The i-th eigenvector */
- /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
- /* > ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal */
- /* > matrix). The support of the eigenvectors of A is typically */
- /* > 1:N because of the orthogonal transformations applied by SORMTR. */
- /* > Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,26*N). */
- /* > For optimal efficiency, LWORK >= (NB+6)*N, */
- /* > where NB is the f2cmax of the blocksize for SSYTRD and SORMTR */
- /* > returned by ILAENV. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal sizes of the WORK and IWORK */
- /* > arrays, returns these values as the first entries of the WORK */
- /* > and IWORK arrays, and no error message related to LWORK or */
- /* > LIWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
- /* > On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LIWORK */
- /* > \verbatim */
- /* > LIWORK is INTEGER */
- /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N). */
- /* > */
- /* > If LIWORK = -1, then a workspace query is assumed; the */
- /* > routine only calculates the optimal sizes of the WORK and */
- /* > IWORK arrays, returns these values as the first entries of */
- /* > the WORK and IWORK arrays, and no error message related to */
- /* > LWORK or LIWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: Internal error */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup realSYeigen */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Inderjit Dhillon, IBM Almaden, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
- /* > Ken Stanley, Computer Science Division, University of */
- /* > California at Berkeley, USA \n */
- /* > Jason Riedy, Computer Science Division, University of */
- /* > California at Berkeley, USA \n */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void ssyevr_(char *jobz, char *range, char *uplo, integer *n,
- real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu,
- real *abstol, integer *m, real *w, real *z__, integer *ldz, integer *
- isuppz, real *work, integer *lwork, integer *iwork, integer *liwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
- real r__1, r__2;
-
- /* Local variables */
- integer indd, inde;
- real anrm;
- integer imax;
- real rmin, rmax;
- logical test;
- integer i__, j, inddd, indee;
- real sigma;
- extern logical lsame_(char *, char *);
- integer iinfo;
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
- char order[1];
- integer indwk, lwmin;
- logical lower;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *), sswap_(integer *, real *, integer *, real *, integer *
- );
- logical wantz;
- integer nb, jj;
- logical alleig, indeig;
- integer iscale, ieeeok, indibl, indifl;
- logical valeig;
- extern real slamch_(char *);
- real safmin;
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- real abstll, bignum;
- integer indtau, indisp, indiwo, indwkn, liwmin;
- logical tryrac;
- extern /* Subroutine */ void sstein_(integer *, real *, real *, integer *,
- real *, integer *, integer *, real *, integer *, real *, integer *
- , integer *, integer *), ssterf_(integer *, real *, real *,
- integer *);
- integer llwrkn, llwork, nsplit;
- real smlnum;
- extern real slansy_(char *, char *, integer *, real *, integer *, real *);
- extern /* Subroutine */ void sstebz_(char *, char *, integer *, real *,
- real *, integer *, integer *, real *, real *, real *, integer *,
- integer *, real *, integer *, integer *, real *, integer *,
- integer *), sstemr_(char *, char *, integer *,
- real *, real *, real *, real *, integer *, integer *, integer *,
- real *, real *, integer *, integer *, integer *, logical *, real *
- , integer *, integer *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- extern /* Subroutine */ void sormtr_(char *, char *, char *, integer *,
- integer *, real *, integer *, real *, real *, integer *, real *,
- integer *, integer *), ssytrd_(char *,
- integer *, real *, integer *, real *, real *, real *, real *,
- integer *, integer *);
- real eps, vll, vuu, tmp1;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --isuppz;
- --work;
- --iwork;
-
- /* Function Body */
- ieeeok = ilaenv_(&c__10, "SSYEVR", "N", &c__1, &c__2, &c__3, &c__4, (
- ftnlen)6, (ftnlen)1);
-
- lower = lsame_(uplo, "L");
- wantz = lsame_(jobz, "V");
- alleig = lsame_(range, "A");
- valeig = lsame_(range, "V");
- indeig = lsame_(range, "I");
-
- lquery = *lwork == -1 || *liwork == -1;
-
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 26;
- lwmin = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 10;
- liwmin = f2cmax(i__1,i__2);
-
- *info = 0;
- if (! (wantz || lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (alleig || valeig || indeig)) {
- *info = -2;
- } else if (! (lower || lsame_(uplo, "U"))) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -6;
- } else {
- if (valeig) {
- if (*n > 0 && *vu <= *vl) {
- *info = -8;
- }
- } else if (indeig) {
- if (*il < 1 || *il > f2cmax(1,*n)) {
- *info = -9;
- } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
- *info = -10;
- }
- }
- }
- if (*info == 0) {
- if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -15;
- }
- }
-
- if (*info == 0) {
- nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
- (ftnlen)1);
- /* Computing MAX */
- i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nb = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = (nb + 1) * *n;
- lwkopt = f2cmax(i__1,lwmin);
- work[1] = (real) lwkopt;
- iwork[1] = liwmin;
-
- if (*lwork < lwmin && ! lquery) {
- *info = -18;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -20;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SSYEVR", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- *m = 0;
- if (*n == 0) {
- work[1] = 1.f;
- return;
- }
-
- if (*n == 1) {
- work[1] = 26.f;
- if (alleig || indeig) {
- *m = 1;
- w[1] = a[a_dim1 + 1];
- } else {
- if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
- *m = 1;
- w[1] = a[a_dim1 + 1];
- }
- }
- if (wantz) {
- z__[z_dim1 + 1] = 1.f;
- isuppz[1] = 1;
- isuppz[2] = 1;
- }
- return;
- }
-
- /* Get machine constants. */
-
- safmin = slamch_("Safe minimum");
- eps = slamch_("Precision");
- smlnum = safmin / eps;
- bignum = 1.f / smlnum;
- rmin = sqrt(smlnum);
- /* Computing MIN */
- r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
- rmax = f2cmin(r__1,r__2);
-
- /* Scale matrix to allowable range, if necessary. */
-
- iscale = 0;
- abstll = *abstol;
- if (valeig) {
- vll = *vl;
- vuu = *vu;
- }
- anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
- if (anrm > 0.f && anrm < rmin) {
- iscale = 1;
- sigma = rmin / anrm;
- } else if (anrm > rmax) {
- iscale = 1;
- sigma = rmax / anrm;
- }
- if (iscale == 1) {
- if (lower) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j + 1;
- sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
- /* L10: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
- /* L20: */
- }
- }
- if (*abstol > 0.f) {
- abstll = *abstol * sigma;
- }
- if (valeig) {
- vll = *vl * sigma;
- vuu = *vu * sigma;
- }
- }
- /* Initialize indices into workspaces. Note: The IWORK indices are */
- /* used only if SSTERF or SSTEMR fail. */
- /* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
- /* elementary reflectors used in SSYTRD. */
- indtau = 1;
- /* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
- indd = indtau + *n;
- /* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
- /* tridiagonal matrix from SSYTRD. */
- inde = indd + *n;
- /* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
- /* -written by SSTEMR (the SSTERF path copies the diagonal to W). */
- inddd = inde + *n;
- /* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
- /* -written while computing the eigenvalues in SSTERF and SSTEMR. */
- indee = inddd + *n;
- /* INDWK is the starting offset of the left-over workspace, and */
- /* LLWORK is the remaining workspace size. */
- indwk = indee + *n;
- llwork = *lwork - indwk + 1;
- /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
- /* stores the block indices of each of the M<=N eigenvalues. */
- indibl = 1;
- /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
- /* stores the starting and finishing indices of each block. */
- indisp = indibl + *n;
- /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
- /* that corresponding to eigenvectors that fail to converge in */
- /* SSTEIN. This information is discarded; if any fail, the driver */
- /* returns INFO > 0. */
- indifl = indisp + *n;
- /* INDIWO is the offset of the remaining integer workspace. */
- indiwo = indifl + *n;
-
- /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
-
- ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
- indtau], &work[indwk], &llwork, &iinfo);
-
- /* If all eigenvalues are desired */
- /* then call SSTERF or SSTEMR and SORMTR. */
-
- test = FALSE_;
- if (indeig) {
- if (*il == 1 && *iu == *n) {
- test = TRUE_;
- }
- }
- if ((alleig || test) && ieeeok == 1) {
- if (! wantz) {
- scopy_(n, &work[indd], &c__1, &w[1], &c__1);
- i__1 = *n - 1;
- scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
- ssterf_(n, &w[1], &work[indee], info);
- } else {
- i__1 = *n - 1;
- scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
- scopy_(n, &work[indd], &c__1, &work[inddd], &c__1);
-
- if (*abstol <= *n * 2.f * eps) {
- tryrac = TRUE_;
- } else {
- tryrac = FALSE_;
- }
- sstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu,
- m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
- work[indwk], lwork, &iwork[1], liwork, info);
-
-
-
- /* Apply orthogonal matrix used in reduction to tridiagonal */
- /* form to eigenvectors returned by SSTEMR. */
-
- if (wantz && *info == 0) {
- indwkn = inde;
- llwrkn = *lwork - indwkn + 1;
- sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
- , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
- }
- }
-
-
- if (*info == 0) {
- /* Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are */
- /* undefined. */
- *m = *n;
- goto L30;
- }
- *info = 0;
- }
-
- /* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
- /* Also call SSTEBZ and SSTEIN if SSTEMR fails. */
-
- if (wantz) {
- *(unsigned char *)order = 'B';
- } else {
- *(unsigned char *)order = 'E';
- }
- sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
- inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
- indwk], &iwork[indiwo], info);
-
- if (wantz) {
- sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
- indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
- iwork[indifl], info);
-
- /* Apply orthogonal matrix used in reduction to tridiagonal */
- /* form to eigenvectors returned by SSTEIN. */
-
- indwkn = inde;
- llwrkn = *lwork - indwkn + 1;
- sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
- z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
- }
-
- /* If matrix was scaled, then rescale eigenvalues appropriately. */
-
- /* Jump here if SSTEMR/SSTEIN succeeded. */
- L30:
- if (iscale == 1) {
- if (*info == 0) {
- imax = *m;
- } else {
- imax = *info - 1;
- }
- r__1 = 1.f / sigma;
- sscal_(&imax, &r__1, &w[1], &c__1);
- }
-
- /* If eigenvalues are not in order, then sort them, along with */
- /* eigenvectors. Note: We do not sort the IFAIL portion of IWORK. */
- /* It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do */
- /* not return this detailed information to the user. */
-
- if (wantz) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- i__ = 0;
- tmp1 = w[j];
- i__2 = *m;
- for (jj = j + 1; jj <= i__2; ++jj) {
- if (w[jj] < tmp1) {
- i__ = jj;
- tmp1 = w[jj];
- }
- /* L40: */
- }
-
- if (i__ != 0) {
- w[i__] = w[j];
- w[j] = tmp1;
- sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
- &c__1);
- }
- /* L50: */
- }
- }
-
- /* Set WORK(1) to optimal workspace size. */
-
- work[1] = (real) lwkopt;
- iwork[1] = liwmin;
-
- return;
-
- /* End of SSYEVR */
-
- } /* ssyevr_ */
|