|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b SSPGVX */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SSPGVX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, */
- /* IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, */
- /* IFAIL, INFO ) */
-
- /* CHARACTER JOBZ, RANGE, UPLO */
- /* INTEGER IL, INFO, ITYPE, IU, LDZ, M, N */
- /* REAL ABSTOL, VL, VU */
- /* INTEGER IFAIL( * ), IWORK( * ) */
- /* REAL AP( * ), BP( * ), W( * ), WORK( * ), */
- /* $ Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SSPGVX computes selected eigenvalues, and optionally, eigenvectors */
- /* > of a real generalized symmetric-definite eigenproblem, of the form */
- /* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */
- /* > and B are assumed to be symmetric, stored in packed storage, and B */
- /* > is also positive definite. Eigenvalues and eigenvectors can be */
- /* > selected by specifying either a range of values or a range of indices */
- /* > for the desired eigenvalues. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] ITYPE */
- /* > \verbatim */
- /* > ITYPE is INTEGER */
- /* > Specifies the problem type to be solved: */
- /* > = 1: A*x = (lambda)*B*x */
- /* > = 2: A*B*x = (lambda)*x */
- /* > = 3: B*A*x = (lambda)*x */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBZ */
- /* > \verbatim */
- /* > JOBZ is CHARACTER*1 */
- /* > = 'N': Compute eigenvalues only; */
- /* > = 'V': Compute eigenvalues and eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RANGE */
- /* > \verbatim */
- /* > RANGE is CHARACTER*1 */
- /* > = 'A': all eigenvalues will be found. */
- /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* > will be found. */
- /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A and B are stored; */
- /* > = 'L': Lower triangle of A and B are stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix pencil (A,B). N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AP */
- /* > \verbatim */
- /* > AP is REAL array, dimension (N*(N+1)/2) */
- /* > On entry, the upper or lower triangle of the symmetric matrix */
- /* > A, packed columnwise in a linear array. The j-th column of A */
- /* > is stored in the array AP as follows: */
- /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
- /* > */
- /* > On exit, the contents of AP are destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] BP */
- /* > \verbatim */
- /* > BP is REAL array, dimension (N*(N+1)/2) */
- /* > On entry, the upper or lower triangle of the symmetric matrix */
- /* > B, packed columnwise in a linear array. The j-th column of B */
- /* > is stored in the array BP as follows: */
- /* > if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
- /* > if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
- /* > */
- /* > On exit, the triangular factor U or L from the Cholesky */
- /* > factorization B = U**T*U or B = L*L**T, in the same storage */
- /* > format as B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is REAL */
- /* > */
- /* > If RANGE='V', the lower bound of the interval to */
- /* > be searched for eigenvalues. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VU */
- /* > \verbatim */
- /* > VU is REAL */
- /* > */
- /* > If RANGE='V', the upper bound of the interval to */
- /* > be searched for eigenvalues. VL < VU. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IL */
- /* > \verbatim */
- /* > IL is INTEGER */
- /* > */
- /* > If RANGE='I', the index of the */
- /* > smallest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IU */
- /* > \verbatim */
- /* > IU is INTEGER */
- /* > */
- /* > If RANGE='I', the index of the */
- /* > largest eigenvalue to be returned. */
- /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ABSTOL */
- /* > \verbatim */
- /* > ABSTOL is REAL */
- /* > The absolute error tolerance for the eigenvalues. */
- /* > An approximate eigenvalue is accepted as converged */
- /* > when it is determined to lie in an interval [a,b] */
- /* > of width less than or equal to */
- /* > */
- /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
- /* > */
- /* > where EPS is the machine precision. If ABSTOL is less than */
- /* > or equal to zero, then EPS*|T| will be used in its place, */
- /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
- /* > by reducing A to tridiagonal form. */
- /* > */
- /* > Eigenvalues will be computed most accurately when ABSTOL is */
- /* > set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
- /* > If this routine returns with INFO>0, indicating that some */
- /* > eigenvectors did not converge, try setting ABSTOL to */
- /* > 2*SLAMCH('S'). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The total number of eigenvalues found. 0 <= M <= N. */
- /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is REAL array, dimension (N) */
- /* > On normal exit, the first M elements contain the selected */
- /* > eigenvalues in ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (LDZ, f2cmax(1,M)) */
- /* > If JOBZ = 'N', then Z is not referenced. */
- /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
- /* > contain the orthonormal eigenvectors of the matrix A */
- /* > corresponding to the selected eigenvalues, with the i-th */
- /* > column of Z holding the eigenvector associated with W(i). */
- /* > The eigenvectors are normalized as follows: */
- /* > if ITYPE = 1 or 2, Z**T*B*Z = I; */
- /* > if ITYPE = 3, Z**T*inv(B)*Z = I. */
- /* > */
- /* > If an eigenvector fails to converge, then that column of Z */
- /* > contains the latest approximation to the eigenvector, and the */
- /* > index of the eigenvector is returned in IFAIL. */
- /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
- /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* > is not known in advance and an upper bound must be used. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1, and if */
- /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (8*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (5*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IFAIL */
- /* > \verbatim */
- /* > IFAIL is INTEGER array, dimension (N) */
- /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
- /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
- /* > indices of the eigenvectors that failed to converge. */
- /* > If JOBZ = 'N', then IFAIL is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: SPPTRF or SSPEVX returned an error code: */
- /* > <= N: if INFO = i, SSPEVX failed to converge; */
- /* > i eigenvectors failed to converge. Their indices */
- /* > are stored in array IFAIL. */
- /* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */
- /* > minor of order i of B is not positive definite. */
- /* > The factorization of B could not be completed and */
- /* > no eigenvalues or eigenvectors were computed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup realOTHEReigen */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
-
- /* ===================================================================== */
- /* Subroutine */ void sspgvx_(integer *itype, char *jobz, char *range, char *
- uplo, integer *n, real *ap, real *bp, real *vl, real *vu, integer *il,
- integer *iu, real *abstol, integer *m, real *w, real *z__, integer *
- ldz, real *work, integer *iwork, integer *ifail, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1;
-
- /* Local variables */
- integer j;
- extern logical lsame_(char *, char *);
- char trans[1];
- logical upper, wantz;
- extern /* Subroutine */ void stpmv_(char *, char *, char *, integer *,
- real *, real *, integer *), stpsv_(char *,
- char *, char *, integer *, real *, real *, integer *);
- logical alleig, indeig, valeig;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void spptrf_(
- char *, integer *, real *, integer *), sspgst_(integer *,
- char *, integer *, real *, real *, integer *), sspevx_(
- char *, char *, char *, integer *, real *, real *, real *,
- integer *, integer *, real *, integer *, real *, real *, integer *
- , real *, integer *, integer *, integer *)
- ;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --ap;
- --bp;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
- --iwork;
- --ifail;
-
- /* Function Body */
- upper = lsame_(uplo, "U");
- wantz = lsame_(jobz, "V");
- alleig = lsame_(range, "A");
- valeig = lsame_(range, "V");
- indeig = lsame_(range, "I");
-
- *info = 0;
- if (*itype < 1 || *itype > 3) {
- *info = -1;
- } else if (! (wantz || lsame_(jobz, "N"))) {
- *info = -2;
- } else if (! (alleig || valeig || indeig)) {
- *info = -3;
- } else if (! (upper || lsame_(uplo, "L"))) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else {
- if (valeig) {
- if (*n > 0 && *vu <= *vl) {
- *info = -9;
- }
- } else if (indeig) {
- if (*il < 1) {
- *info = -10;
- } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
- *info = -11;
- }
- }
- }
- if (*info == 0) {
- if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -16;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SSPGVX", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- *m = 0;
- if (*n == 0) {
- return;
- }
-
- /* Form a Cholesky factorization of B. */
-
- spptrf_(uplo, n, &bp[1], info);
- if (*info != 0) {
- *info = *n + *info;
- return;
- }
-
- /* Transform problem to standard eigenvalue problem and solve. */
-
- sspgst_(itype, uplo, n, &ap[1], &bp[1], info);
- sspevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], &
- z__[z_offset], ldz, &work[1], &iwork[1], &ifail[1], info);
-
- if (wantz) {
-
- /* Backtransform eigenvectors to the original problem. */
-
- if (*info > 0) {
- *m = *info - 1;
- }
- if (*itype == 1 || *itype == 2) {
-
- /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
- /* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y */
-
- if (upper) {
- *(unsigned char *)trans = 'N';
- } else {
- *(unsigned char *)trans = 'T';
- }
-
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- stpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
- 1], &c__1);
- /* L10: */
- }
-
- } else if (*itype == 3) {
-
- /* For B*A*x=(lambda)*x; */
- /* backtransform eigenvectors: x = L*y or U**T*y */
-
- if (upper) {
- *(unsigned char *)trans = 'T';
- } else {
- *(unsigned char *)trans = 'N';
- }
-
- i__1 = *m;
- for (j = 1; j <= i__1; ++j) {
- stpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
- 1], &c__1);
- /* L20: */
- }
- }
- }
-
- return;
-
- /* End of SSPGVX */
-
- } /* sspgvx_ */
|