|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static real c_b9 = 0.f;
- static real c_b10 = 1.f;
- static integer c__1 = 1;
-
- /* > \brief \b SSBTRD */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SSBTRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbtrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbtrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbtrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
- /* WORK, INFO ) */
-
- /* CHARACTER UPLO, VECT */
- /* INTEGER INFO, KD, LDAB, LDQ, N */
- /* REAL AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SSBTRD reduces a real symmetric band matrix A to symmetric */
- /* > tridiagonal form T by an orthogonal similarity transformation: */
- /* > Q**T * A * Q = T. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] VECT */
- /* > \verbatim */
- /* > VECT is CHARACTER*1 */
- /* > = 'N': do not form Q; */
- /* > = 'V': form Q; */
- /* > = 'U': update a matrix X, by forming X*Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KD */
- /* > \verbatim */
- /* > KD is INTEGER */
- /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AB */
- /* > \verbatim */
- /* > AB is REAL array, dimension (LDAB,N) */
- /* > On entry, the upper or lower triangle of the symmetric band */
- /* > matrix A, stored in the first KD+1 rows of the array. The */
- /* > j-th column of A is stored in the j-th column of the array AB */
- /* > as follows: */
- /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
- /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
- /* > On exit, the diagonal elements of AB are overwritten by the */
- /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
- /* > elements on the first superdiagonal (if UPLO = 'U') or the */
- /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
- /* > off-diagonal elements of T; the rest of AB is overwritten by */
- /* > values generated during the reduction. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAB */
- /* > \verbatim */
- /* > LDAB is INTEGER */
- /* > The leading dimension of the array AB. LDAB >= KD+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension (N) */
- /* > The diagonal elements of the tridiagonal matrix T. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is REAL array, dimension (N-1) */
- /* > The off-diagonal elements of the tridiagonal matrix T: */
- /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is REAL array, dimension (LDQ,N) */
- /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
- /* > matrix X; if VECT = 'N' or 'V', then Q need not be set. */
- /* > */
- /* > On exit: */
- /* > if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; */
- /* > if VECT = 'U', Q contains the product X*Q; */
- /* > if VECT = 'N', the array Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Modified by Linda Kaufman, Bell Labs. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void ssbtrd_(char *vect, char *uplo, integer *n, integer *kd,
- real *ab, integer *ldab, real *d__, real *e, real *q, integer *ldq,
- real *work, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
- i__5;
-
- /* Local variables */
- integer inca, jend, lend, jinc, incx, last;
- real temp;
- extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
- integer *, real *, real *);
- integer j1end, j1inc, i__, j, k, l, iqend;
- extern logical lsame_(char *, char *);
- logical initq, wantq, upper;
- integer i2, j1, j2;
- extern /* Subroutine */ void slar2v_(integer *, real *, real *, real *,
- integer *, real *, real *, integer *);
- integer nq, nr, iqaend;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void slaset_(
- char *, integer *, integer *, real *, real *, real *, integer *), slartg_(real *, real *, real *, real *, real *), slargv_(
- integer *, real *, integer *, real *, integer *, real *, integer *
- );
- integer kd1;
- extern /* Subroutine */ void slartv_(integer *, real *, integer *, real *,
- integer *, real *, real *, integer *);
- integer ibl, iqb, kdn, jin, nrt, kdm1;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1 * 1;
- ab -= ab_offset;
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --work;
-
- /* Function Body */
- initq = lsame_(vect, "V");
- wantq = initq || lsame_(vect, "U");
- upper = lsame_(uplo, "U");
- kd1 = *kd + 1;
- kdm1 = *kd - 1;
- incx = *ldab - 1;
- iqend = 1;
-
- *info = 0;
- if (! wantq && ! lsame_(vect, "N")) {
- *info = -1;
- } else if (! upper && ! lsame_(uplo, "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*kd < 0) {
- *info = -4;
- } else if (*ldab < kd1) {
- *info = -6;
- } else if (*ldq < f2cmax(1,*n) && wantq) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SSBTRD", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Initialize Q to the unit matrix, if needed */
-
- if (initq) {
- slaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
- }
-
- /* Wherever possible, plane rotations are generated and applied in */
- /* vector operations of length NR over the index set J1:J2:KD1. */
-
- /* The cosines and sines of the plane rotations are stored in the */
- /* arrays D and WORK. */
-
- inca = kd1 * *ldab;
- /* Computing MIN */
- i__1 = *n - 1;
- kdn = f2cmin(i__1,*kd);
- if (upper) {
-
- if (*kd > 1) {
-
- /* Reduce to tridiagonal form, working with upper triangle */
-
- nr = 0;
- j1 = kdn + 2;
- j2 = 1;
-
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* Reduce i-th row of matrix to tridiagonal form */
-
- for (k = kdn + 1; k >= 2; --k) {
- j1 += kdn;
- j2 += kdn;
-
- if (nr > 0) {
-
- /* generate plane rotations to annihilate nonzero */
- /* elements which have been created outside the band */
-
- slargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
- work[j1], &kd1, &d__[j1], &kd1);
-
- /* apply rotations from the right */
-
-
- /* Dependent on the the number of diagonals either */
- /* SLARTV or SROT is used */
-
- if (nr >= (*kd << 1) - 1) {
- i__2 = *kd - 1;
- for (l = 1; l <= i__2; ++l) {
- slartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
- &inca, &ab[l + j1 * ab_dim1], &inca, &
- d__[j1], &work[j1], &kd1);
- /* L10: */
- }
-
- } else {
- jend = j1 + (nr - 1) * kd1;
- i__2 = jend;
- i__3 = kd1;
- for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
- i__2; jinc += i__3) {
- srot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
- c__1, &ab[jinc * ab_dim1 + 1], &c__1,
- &d__[jinc], &work[jinc]);
- /* L20: */
- }
- }
- }
-
-
- if (k > 2) {
- if (k <= *n - i__ + 1) {
-
- /* generate plane rotation to annihilate a(i,i+k-1) */
- /* within the band */
-
- slartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
- , &ab[*kd - k + 2 + (i__ + k - 1) *
- ab_dim1], &d__[i__ + k - 1], &work[i__ +
- k - 1], &temp);
- ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
-
- /* apply rotation from the right */
-
- i__3 = k - 3;
- srot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
- ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
- k - 1) * ab_dim1], &c__1, &d__[i__ + k -
- 1], &work[i__ + k - 1]);
- }
- ++nr;
- j1 = j1 - kdn - 1;
- }
-
- /* apply plane rotations from both sides to diagonal */
- /* blocks */
-
- if (nr > 0) {
- slar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
- j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
- &d__[j1], &work[j1], &kd1);
- }
-
- /* apply plane rotations from the left */
-
- if (nr > 0) {
- if ((*kd << 1) - 1 < nr) {
-
- /* Dependent on the the number of diagonals either */
- /* SLARTV or SROT is used */
-
- i__3 = *kd - 1;
- for (l = 1; l <= i__3; ++l) {
- if (j2 + l > *n) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- slartv_(&nrt, &ab[*kd - l + (j1 + l) *
- ab_dim1], &inca, &ab[*kd - l + 1
- + (j1 + l) * ab_dim1], &inca, &
- d__[j1], &work[j1], &kd1);
- }
- /* L30: */
- }
- } else {
- j1end = j1 + kd1 * (nr - 2);
- if (j1end >= j1) {
- i__3 = j1end;
- i__2 = kd1;
- for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
- i__3; jin += i__2) {
- i__4 = *kd - 1;
- srot_(&i__4, &ab[*kd - 1 + (jin + 1) *
- ab_dim1], &incx, &ab[*kd + (jin +
- 1) * ab_dim1], &incx, &d__[jin], &
- work[jin]);
- /* L40: */
- }
- }
- /* Computing MIN */
- i__2 = kdm1, i__3 = *n - j2;
- lend = f2cmin(i__2,i__3);
- last = j1end + kd1;
- if (lend > 0) {
- srot_(&lend, &ab[*kd - 1 + (last + 1) *
- ab_dim1], &incx, &ab[*kd + (last + 1)
- * ab_dim1], &incx, &d__[last], &work[
- last]);
- }
- }
- }
-
- if (wantq) {
-
- /* accumulate product of plane rotations in Q */
-
- if (initq) {
-
- /* take advantage of the fact that Q was */
- /* initially the Identity matrix */
-
- iqend = f2cmax(iqend,j2);
- /* Computing MAX */
- i__2 = 0, i__3 = k - 3;
- i2 = f2cmax(i__2,i__3);
- iqaend = i__ * *kd + 1;
- if (k == 2) {
- iqaend += *kd;
- }
- iqaend = f2cmin(iqaend,iqend);
- i__2 = j2;
- i__3 = kd1;
- for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
- += i__3) {
- ibl = i__ - i2 / kdm1;
- ++i2;
- /* Computing MAX */
- i__4 = 1, i__5 = j - ibl;
- iqb = f2cmax(i__4,i__5);
- nq = iqaend + 1 - iqb;
- /* Computing MIN */
- i__4 = iqaend + *kd;
- iqaend = f2cmin(i__4,iqend);
- srot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
- &q[iqb + j * q_dim1], &c__1, &d__[j],
- &work[j]);
- /* L50: */
- }
- } else {
-
- i__3 = j2;
- i__2 = kd1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
- += i__2) {
- srot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
- j * q_dim1 + 1], &c__1, &d__[j], &
- work[j]);
- /* L60: */
- }
- }
-
- }
-
- if (j2 + kdn > *n) {
-
- /* adjust J2 to keep within the bounds of the matrix */
-
- --nr;
- j2 = j2 - kdn - 1;
- }
-
- i__2 = j2;
- i__3 = kd1;
- for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
- {
-
- /* create nonzero element a(j-1,j+kd) outside the band */
- /* and store it in WORK */
-
- work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
- ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) *
- ab_dim1 + 1];
- /* L70: */
- }
- /* L80: */
- }
- /* L90: */
- }
- }
-
- if (*kd > 0) {
-
- /* copy off-diagonal elements to E */
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
- /* L100: */
- }
- } else {
-
- /* set E to zero if original matrix was diagonal */
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = 0.f;
- /* L110: */
- }
- }
-
- /* copy diagonal elements to D */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[kd1 + i__ * ab_dim1];
- /* L120: */
- }
-
- } else {
-
- if (*kd > 1) {
-
- /* Reduce to tridiagonal form, working with lower triangle */
-
- nr = 0;
- j1 = kdn + 2;
- j2 = 1;
-
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* Reduce i-th column of matrix to tridiagonal form */
-
- for (k = kdn + 1; k >= 2; --k) {
- j1 += kdn;
- j2 += kdn;
-
- if (nr > 0) {
-
- /* generate plane rotations to annihilate nonzero */
- /* elements which have been created outside the band */
-
- slargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
- work[j1], &kd1, &d__[j1], &kd1);
-
- /* apply plane rotations from one side */
-
-
- /* Dependent on the the number of diagonals either */
- /* SLARTV or SROT is used */
-
- if (nr > (*kd << 1) - 1) {
- i__3 = *kd - 1;
- for (l = 1; l <= i__3; ++l) {
- slartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
- ab_dim1], &inca, &ab[kd1 - l + 1 + (
- j1 - kd1 + l) * ab_dim1], &inca, &d__[
- j1], &work[j1], &kd1);
- /* L130: */
- }
- } else {
- jend = j1 + kd1 * (nr - 1);
- i__3 = jend;
- i__2 = kd1;
- for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
- i__3; jinc += i__2) {
- srot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
- , &incx, &ab[kd1 + (jinc - *kd) *
- ab_dim1], &incx, &d__[jinc], &work[
- jinc]);
- /* L140: */
- }
- }
-
- }
-
- if (k > 2) {
- if (k <= *n - i__ + 1) {
-
- /* generate plane rotation to annihilate a(i+k-1,i) */
- /* within the band */
-
- slartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
- ab_dim1], &d__[i__ + k - 1], &work[i__ +
- k - 1], &temp);
- ab[k - 1 + i__ * ab_dim1] = temp;
-
- /* apply rotation from the left */
-
- i__2 = k - 3;
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- srot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
- i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
- i__4, &d__[i__ + k - 1], &work[i__ + k -
- 1]);
- }
- ++nr;
- j1 = j1 - kdn - 1;
- }
-
- /* apply plane rotations from both sides to diagonal */
- /* blocks */
-
- if (nr > 0) {
- slar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
- ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
- inca, &d__[j1], &work[j1], &kd1);
- }
-
- /* apply plane rotations from the right */
-
-
- /* Dependent on the the number of diagonals either */
- /* SLARTV or SROT is used */
-
- if (nr > 0) {
- if (nr > (*kd << 1) - 1) {
- i__2 = *kd - 1;
- for (l = 1; l <= i__2; ++l) {
- if (j2 + l > *n) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- slartv_(&nrt, &ab[l + 2 + (j1 - 1) *
- ab_dim1], &inca, &ab[l + 1 + j1 *
- ab_dim1], &inca, &d__[j1], &work[
- j1], &kd1);
- }
- /* L150: */
- }
- } else {
- j1end = j1 + kd1 * (nr - 2);
- if (j1end >= j1) {
- i__2 = j1end;
- i__3 = kd1;
- for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
- j1inc <= i__2; j1inc += i__3) {
- srot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
- 3], &c__1, &ab[j1inc * ab_dim1 +
- 2], &c__1, &d__[j1inc], &work[
- j1inc]);
- /* L160: */
- }
- }
- /* Computing MIN */
- i__3 = kdm1, i__2 = *n - j2;
- lend = f2cmin(i__3,i__2);
- last = j1end + kd1;
- if (lend > 0) {
- srot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
- c__1, &ab[last * ab_dim1 + 2], &c__1,
- &d__[last], &work[last]);
- }
- }
- }
-
-
-
- if (wantq) {
-
- /* accumulate product of plane rotations in Q */
-
- if (initq) {
-
- /* take advantage of the fact that Q was */
- /* initially the Identity matrix */
-
- iqend = f2cmax(iqend,j2);
- /* Computing MAX */
- i__3 = 0, i__2 = k - 3;
- i2 = f2cmax(i__3,i__2);
- iqaend = i__ * *kd + 1;
- if (k == 2) {
- iqaend += *kd;
- }
- iqaend = f2cmin(iqaend,iqend);
- i__3 = j2;
- i__2 = kd1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
- += i__2) {
- ibl = i__ - i2 / kdm1;
- ++i2;
- /* Computing MAX */
- i__4 = 1, i__5 = j - ibl;
- iqb = f2cmax(i__4,i__5);
- nq = iqaend + 1 - iqb;
- /* Computing MIN */
- i__4 = iqaend + *kd;
- iqaend = f2cmin(i__4,iqend);
- srot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
- &q[iqb + j * q_dim1], &c__1, &d__[j],
- &work[j]);
- /* L170: */
- }
- } else {
-
- i__2 = j2;
- i__3 = kd1;
- for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
- += i__3) {
- srot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
- j * q_dim1 + 1], &c__1, &d__[j], &
- work[j]);
- /* L180: */
- }
- }
- }
-
- if (j2 + kdn > *n) {
-
- /* adjust J2 to keep within the bounds of the matrix */
-
- --nr;
- j2 = j2 - kdn - 1;
- }
-
- i__3 = j2;
- i__2 = kd1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
- {
-
- /* create nonzero element a(j+kd,j-1) outside the */
- /* band and store it in WORK */
-
- work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
- ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]
- ;
- /* L190: */
- }
- /* L200: */
- }
- /* L210: */
- }
- }
-
- if (*kd > 0) {
-
- /* copy off-diagonal elements to E */
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[i__ * ab_dim1 + 2];
- /* L220: */
- }
- } else {
-
- /* set E to zero if original matrix was diagonal */
-
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = 0.f;
- /* L230: */
- }
- }
-
- /* copy diagonal elements to D */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[i__ * ab_dim1 + 1];
- /* L240: */
- }
- }
-
- return;
-
- /* End of SSBTRD */
-
- } /* ssbtrd_ */
|