|
- *> \brief <b> SPTSV computes the solution to system of linear equations A * X = B for PT matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPTSV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptsv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptsv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptsv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPTSV( N, NRHS, D, E, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), D( * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPTSV computes the solution to a real system of linear equations
- *> A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
- *> matrix, and X and B are N-by-NRHS matrices.
- *>
- *> A is factored as A = L*D*L**T, and the factored form of A is then
- *> used to solve the system of equations.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the n diagonal elements of the tridiagonal matrix
- *> A. On exit, the n diagonal elements of the diagonal matrix
- *> D from the factorization A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> On entry, the (n-1) subdiagonal elements of the tridiagonal
- *> matrix A. On exit, the (n-1) subdiagonal elements of the
- *> unit bidiagonal factor L from the L*D*L**T factorization of
- *> A. (E can also be regarded as the superdiagonal of the unit
- *> bidiagonal factor U from the U**T*D*U factorization of A.)
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the leading principal minor of order i
- *> is not positive, and the solution has not been
- *> computed. The factorization has not been completed
- *> unless i = N.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realPTsolve
- *
- * =====================================================================
- SUBROUTINE SPTSV( N, NRHS, D, E, B, LDB, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), D( * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. External Subroutines ..
- EXTERNAL SPTTRF, SPTTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPTSV ', -INFO )
- RETURN
- END IF
- *
- * Compute the L*D*L**T (or U**T*D*U) factorization of A.
- *
- CALL SPTTRF( N, D, E, INFO )
- IF( INFO.EQ.0 ) THEN
- *
- * Solve the system A*X = B, overwriting B with X.
- *
- CALL SPTTRS( N, NRHS, D, E, B, LDB, INFO )
- END IF
- RETURN
- *
- * End of SPTSV
- *
- END
|