|
- *> \brief \b SPTCON
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPTCON + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptcon.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptcon.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptcon.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, N
- * REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPTCON computes the reciprocal of the condition number (in the
- *> 1-norm) of a real symmetric positive definite tridiagonal matrix
- *> using the factorization A = L*D*L**T or A = U**T*D*U computed by
- *> SPTTRF.
- *>
- *> Norm(inv(A)) is computed by a direct method, and the reciprocal of
- *> the condition number is computed as
- *> RCOND = 1 / (ANORM * norm(inv(A))).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The n diagonal elements of the diagonal matrix D from the
- *> factorization of A, as computed by SPTTRF.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The (n-1) off-diagonal elements of the unit bidiagonal factor
- *> U or L from the factorization of A, as computed by SPTTRF.
- *> \endverbatim
- *>
- *> \param[in] ANORM
- *> \verbatim
- *> ANORM is REAL
- *> The 1-norm of the original matrix A.
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of the matrix A,
- *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
- *> 1-norm of inv(A) computed in this routine.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realPTcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The method used is described in Nicholas J. Higham, "Efficient
- *> Algorithms for Computing the Condition Number of a Tridiagonal
- *> Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, N
- REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IX
- REAL AINVNM
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- EXTERNAL ISAMAX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments.
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( ANORM.LT.ZERO ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPTCON', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- RCOND = ZERO
- IF( N.EQ.0 ) THEN
- RCOND = ONE
- RETURN
- ELSE IF( ANORM.EQ.ZERO ) THEN
- RETURN
- END IF
- *
- * Check that D(1:N) is positive.
- *
- DO 10 I = 1, N
- IF( D( I ).LE.ZERO )
- $ RETURN
- 10 CONTINUE
- *
- * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
- *
- * m(i,j) = abs(A(i,j)), i = j,
- * m(i,j) = -abs(A(i,j)), i .ne. j,
- *
- * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T.
- *
- * Solve M(L) * x = e.
- *
- WORK( 1 ) = ONE
- DO 20 I = 2, N
- WORK( I ) = ONE + WORK( I-1 )*ABS( E( I-1 ) )
- 20 CONTINUE
- *
- * Solve D * M(L)**T * x = b.
- *
- WORK( N ) = WORK( N ) / D( N )
- DO 30 I = N - 1, 1, -1
- WORK( I ) = WORK( I ) / D( I ) + WORK( I+1 )*ABS( E( I ) )
- 30 CONTINUE
- *
- * Compute AINVNM = max(x(i)), 1<=i<=n.
- *
- IX = ISAMAX( N, WORK, 1 )
- AINVNM = ABS( WORK( IX ) )
- *
- * Compute the reciprocal condition number.
- *
- IF( AINVNM.NE.ZERO )
- $ RCOND = ( ONE / AINVNM ) / ANORM
- *
- RETURN
- *
- * End of SPTCON
- *
- END
|